AMBIGUITY PROBLEMS WITH POLAR COORDINATES

A given point in the plane can be represented by more than one pair of polar coordinates, and
Section 9.7 of Thomas and Finney, Calculus, Ninth Edition, discusses two problems related to this
fact.

(1) If we are given a curve C' defined by an equation F(r,0) = 0 and a point P with polar
coordinates (g, ), then P may lie on C even if F(q,a) # 0.

(2) If we are given two curves A and B defined by equations F(r,8) = 0 and G(r,6) = 0,
then there may be hidden points (¢, @) lying on BOTH curves A and B such that (¢, «)
is NOT a simultaneous solution of the given two equations. In other words, at least one
of F(q,a) or G(g,«) is nonzero.

Specific examples are given on pages 760 — 762 in the Ninth Edition of Thomas and Finney,
which addresses the second issue by suggesting that one graph the curves A and B to see if there are
any common points that are not given by simultaneous solutions of the equations. This is usually
effective, but it is not systematic or logically complete. We shall describe an analytic procedure for
finding all such hidden points and use it to solve examples like those in the text.

Copies of the relevant pages from Thomas and Finney are appended at the endof this file.
Points with the same polar coordinates

Since the problems in (1) and (2) arise because a point is representable by more than one set
of polar coordinates, it is best to begin by recalling when two pairs of polar coordinates (g, «) and
(s,3) define the same point in the plane. There are two distinct criteria:

n

(i) Both ¢ and s are nonzero, and there is an integer n such that § = a+nm and s = (—1)"q.

(7i) Both ¢ and s are zero, and « and [ are arbitrary.

These criteria are exactly the conditions under which the‘ equations gcosa = rcosa and
gsina = rsin o are both satisfied.m

Application to ambiguity issues

Here is the general criterion for determining whether a point with polar coordinates (g, «) lies
on the curve C defined by F(r,8) = 0.

General condition for (1): If the curve C is defined by F(r,0) = 0, then the point P with
polar coordinates (q,«) lies on C' if and only if one of the following is true: (a) We have q¢ # 0
and there is an n such that F((—1)"q,a+nw) =0. (b) We have ¢ = 0 and there is some (3 such
that F(q,3) =0.m

General condition for (2): If the curves sA and B are defined by F(r,0) = 0 and G(r,0) =0
respectively, then the point P with polar coordinates (q, o) lies on both A and B if and only
if one of the following is true: (a) We have q # 0 and there are integers m and n such that
F((-1)™q,a+mm) =0 and G((—1)"q,a +nm) =0. (b) We have ¢ = 0 and there are some [3
and v such that F(q,3) =0 and F(q,y) =0.m

Textbook examples and exercises usually have a crucial property which leads to simplified
criteria. In such examples the function H = F and (if applicable) G satisfy the periodicity
property

H(r,0) = H(r,0+2n)
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for all r and 6. In particular, this holds when H can be written as a sum of terms of the form
f(r)sin® @ cos® @ where a and b run through finite sets of integers (note that functions like sin k6
and cos 6 are all polynomials in sinf and cosf). In such cases there are only two possibilities
for the values of the expressions H((—1)"q,0 + nr), and one can simplify the criterion (a) in the
general conditions as follows:

Specialized condition for (1): If the curve C is defined by F(r,0) = 0 where F' has the
periodicity property, then the point P with polar coordinates (q,«) lies on C' if and only if one of
the following is true: (a) We have q # 0 and either F(q,a) = 0 or else F(—q,a+7) =0. (b)
We have ¢ = 0 and there is some 3 such that F(q,3) =0.m

Specialized condition for (2): If the curves A and B are defined by F(r,0) = 0 and G(r,0) =0
respectively, then the point P with polar coordinates (g, ) lies on both A and B if and only if
one of the following is true: (a) We have q # 0 and either F(q,a) = G(q,«) = 0 or F(q,a) =
G(—q,a+m) =0 or F(—q,a) = G(¢,a) = 0.  (b) We have ¢ = 0 and there are some [ and 7y
such that F(q,3) =0 and F(q,7) = 0.m

Proof of the main result(s)

Let Rect : R? — R? be the usual map from polar to rectangular coordinates which sends (r, 6)
to (rcosf,rsinf). To prove (1), note that Rect(s,a) lies on the curve defined by F(r,0) = 0 if
and only if there is some (t, 3) such that Rect(s, «) = Rect(t, ) and F(t,3) = 0. The conditions
for Rect(s,a) = Rect(t,3) are either s =t = 0 or s,t # 0 and there is some integer n such that
t = (—1)"s and 8 = a + nm). The conclusion of (1) follows by substituting the conditions of the
second sentence into the first.

To prove (2), recall that the condition for a point Rect(s, «) to be on both curves is that there
are ordered pairs (s1,a1) and (s2,az) which represent the same point in rectangular coordinates
and satisfy the equations F'(s1, ;) = 0 and G(s2,2) = 0. There are now two cases.

Suppose that Rect(s,a) = (0,0). Then s = s; = s = 0 and the condition for the origin to be
a point on both curves is that there are angles 3 and ~ such that F(0,3) = 0 and G(0,~) = 0.

Now suppose that Rect(s, a) # (0,0). Then the condition above translates into the condition
that there are integers m and n such that F((—1)"s,a+mn) =0 and G((—-1)"s,a+nr) =0.=

The specialized statements now follow from the previous discussion.m
Application to ambiguity issues

We shall now apply the preceding criteria to the examples worked out on pages 760 — 762 of the
book by Thomas and Finney, and also to solve exercises 67 — 68 which are described on page 789
of Scharf and Weir, Instructor’s Solutions Manual Part 1 to accompany Thomas’ Calculus, Early
Transcendentals, Tenth Edition. A copy of that page is also appended at the end of this file.

EXAMPLE 5. We are given the curve F(r,6) = r—2cos 20 = 0 and we want to show that the point
with polar coordinates (2,7/2) lies on it. According to the first specialized condition, this will hold
if either F(2,7/2) = 0 or F(—2,37/2) = 0. The first of these does not hold, but the second does
because F(—2,3m/2) is equal to F(—2, —7/2), and as noted in the text the latter turns out to be
Zero.m

EXAMPLE 6. We want to find the common points to the curves defined by F(r,0) = r?—4cosf = 0
and G(r,0) = r —1+cosf = 0. According to the second specialized condition, there are four parts
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to this, the first three of which are solving the three pairs of simultaneous equations as in (a) and
the last of which involves cases where r = 0.

One begins with the system of equations F'(¢,a) = G(q,«) = 0 as in the text, and this yields
two common points. Next, one considers the system F(q,«) = G(—q,« + 7) = 0, which reduces to
r? =4cosf and —r = 1 + cos §. Following the same pattern as on page 767 of the text, we obtain
the equation

r2

—r = 1 4+ cosf = 1+Z

which further reduces to 0 = 72 + 4r + 1, so that » = 2. For these choices of r we have
F2 = 1 + cosf

so that —1 F 2 = cosf. Since —3 = cosf is impossible, we are left with the case where r = —2
and 1 = cosf, so that the point with polar coordinates (—2,0) also lies on the curve. Since the
polar coordinates (—2,0) and (2,7) determine the same point, we conclude that (2,7) is a hidden
intersection point of A and B, as noted in the last paragraph of page 767.

The third part of the problem in our procedure is to examine the system F(—q,a + m) =
G(q,a) = 0, and in this case the first equation is equivalent to r? = —4cosf. If we square the
second equation we obtain 72 = (1 —cos #)?, and if we combine the preceding two equations we find
that

—4cos® — 1 — 2cosh + cos?6

which is equivalent to 0 = (1 + cos§)2. This implies that § = 7 and r = 0. Strictly speaking, this
means that we have no solutions corresponding to the third part of the problem because at this
point we are only looking for solutions where the first polar coordinate is nonzero.

Finally, the fourth step is the one which decides whether or not the origin or pole lies on both
curves. All we need to do is find @ and 3 such that F(0,a) = 0 and G(0,5) = 0. But we see
directly that F(0,7/2) = 0 and G(0,0) = 0, and therefore it follows that (0,0) is another hidden
intersection point of A and B. Furthermore, this also shows that there are no other common points
aside from the four that were found in the text.m

EXERCISE 67. Here we want to find the intersection points of the two cardioids r = 1 = cos 6.
Graphing these curves suggests that there are three common points, one at the origin and two
others at points on the y-axis that are symmetric with respect to the origin. We need to show that
our procedure yields all these points and no others.

The first step is to solve the simultaneous equations 0 = F(r,0) = r — 1 4+ cos@ and 0 =
G(r,0) = r —1—cos® when r # 0. These yield cosf = 0 and hence that § = 7/2 or 37/2 and
consequently » = 1. Thus we have checked that the two points with polar coordinates (1, +7/2) lie
on the curve.

Next we consider the system 0 = F(r,0) = G(—r,0 + 7), The second equation is just 0 =
—r — 1 4 cosf, so we have the system of equations r = 1 — cosf = —1 + cosf. These yield the
impossible equation cos § = 2, so there are no hidden points given by simultaneous solutions of the
second system.

Turing to the third system 0 = G(r,0) = F(—r,0 +7), we have F(—r,0 +7) = —r — 1 — cos#,
so this system becomes r = —1 —cos § = 1+ cos §. These yield the impossible equation cos = —2,
so there are no hidden points given by simultaneous solutions of the third system.
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Finally, we must check to see whether there exist a and (8 such that F(0,«) = G(0,3) = 0.
The answer is yes, and we can choose « and § to be 0 and 7 respectively.n

EXERCISE 68. Here we have the circle r = 2sinf whose radius is 1 and whose center has
rectangular coordinates (0,1), and we also have the four leaf curve r = 2sin 20 whose center is the
origin and whose four leaves each lie in different quadrants of the coordinate plane.

We want to find the common points of the curves whose equations are F(r,0) = r — 2sin6
and G(r,0) = r — 2sin26. These yield the equation sinf = sin 26, and if we solve these for 6 we
find that sinf = 0 or cosf = % For the first option we have # = 0 or 7, and for the second we
have § = +7/3. The first option # = 0 or = implies » = 0, and although this is not strictly covered
by the conditions in the first part of the procedure we can see that F(0,0) = G(0,0) = 0, so that
(0,0) lies on both curves. This means we can skip the fourth part of the procedure. Turning to
the second option, it implies that r = 4++/3, and therefore we also see that the points with polar
coordinates (£v/3,£m/3) also lie on both curves.

The second part of the problem involves the equations F(q,«) = G(—q,a+7) = 0, which leads
to the equation sinf = —sin26. The solutions to this equation are # = 0 or 7 and § = +27/3.
We have already considered the first option, and the second option again leads to r = 4+/3, sop
that we obtain the points with polar coordinates (i\/g, +27/3) as common points of the curve.
However, these are not new because one can check that (£+v/3,£27/3) represent the same points
as (Fv/3,Fm/3) respectively.

Finally, the third part of the problem involves the equations F(—q,a) = G(q,«) = 0, which
leads to the equation — sin# = sin 20. This is equivalent to the equation considered in the second
part of the problem, so it will yield nothing new. Therefore all the solutions are given by the
(extended) first part of the problem as above.m
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The relevant pages from the two cited references are attached.
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extra care necessary in deciding when a point lies on the graph of a polar equation
hd J t=4 r o r 1

and in determining the noints in which nolar eranhs intersect. The problem is that

and in determining the points in which polar graphs intersect. The problem is that

a point of intersection may satisfy the equation of one curve with polar coordinates

that are different from the ones with which it satisfies the equation of another curve.
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EXAMPLE 5  Deceptive coordinates

Show that the point (2, 7 /2) lies on the curve r = 2 cos 26.

Soilution It may seem at first that the point (2, 7w /2) does not lie on the curve
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which is not a true equality gnitude is right, but the sign is wror
suggests looking for a pair of coordmates for the given point in which r is nega tlve,
for example, (—2, —(r/2)). If we try these in the equation » = 2 cos 26, we find
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=
G
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2=2cos2{-E)=2(-1) = -2
L~ = 4L LU = == Ly
“\2)
and the equation is satisfied. The point (2, 7w /2) does lie on the curve. (N
EXAMPLE 6  Elusive intersection points
Find the points of intersection of the curves
r?=4cos 8 and r=1—cosh
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If we substitute cos 6 = r?/4 in the equation r = 1 — cos 8, we get
2
r =
2
4r =4—r
r+4r—-4=20
r=-2+ Z\/Z Quadratic formula
The value r = —2 — 2+/2 has too large an absolute value to belong to either
curve. The values of 6 corresponding to r = —2 + 2+/2 are
9=COS_1(1—" Fromr =1—cos 4§

) .
= cos™! (1 - (2«/— - 2)) Set r = 24/2 — 2.
(
\

o Rounded to the nearest
degree

We have thus identified two intersection points: (r, ) = (242 = 2, £ 80°).
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9.58 The four points of intersection of
the curves r=1—-cos 8 and r> =4 cos 8
(Example 6). Only A and B were found by
simultaneous solution. The other two

were disciosed by graphing.

r=1-—cos @
/_/\ r*=4dcos b
i N T
VRN N

/

l -
2

\

2 |

<2w)—(20/\ 0,0) = (0 /\\l //
N A

If we graph the equations 7> = 4 cos 6 and r = 1 — cos 6 together (Fig. 9.58),
as we can now do by combining the graphs in Figs. 9.54 and 9.55, we see that the
curves also intersect at the point (2, 7) and the origin. Why weren’t the r-values of

\t’ //
S~

these points revealed by the simultaneous solution? The answer is that the points
(0, 0) and (2, ) are not on the curves “simultaneously.” They are not reached
at the same value of 6. On the curve r = 1 — cos 8, the point (2, w) is reached
when 8 = 7. On the curve 72 = 4 cos 9, it is reached when 8 = 0, where it is
identified not by the coordinates (2, ), which do not satisfy the equation, but by
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ordinate equations. A simultaneous solution occurs only where the two graphs
collide” while they are being drawn simultaneously and not where one graph
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is particularly important in the areas of traffic control or missil
example, in traffic control the only issue is whether two aircraft are in the same
place at the same time. The question of whether the curves the craft follow
intersect is unimportant.

To illustrate, graph the polar equations

a»
cu
a
="

r = cos 20 and r = sin 20

in simultaneous mode with 0 < 8 < 2m, 6 Step = 0.1, and view dimensions
[xmin, xmax] = [—1, 1] by [ymin, ymax] = [—1, 1]. While the graphs are being
drawn on the screen, count the number of times the two graphs illuminate a
single pixel simuitaneously. Explain why these points of intersection of the two
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together.




Exercises 9.7 763

Symmetries and Polar Graphs

Identify the symmetries of the curves in Exercises 1-12. Then sketch
the curves.

Lr=14cos® 2. r=2—-2co0s8
3.r=1-sinf 4. r=1+sin6
S.r=2+sinb 6. r=1+2sin6
7. r =sin(6/2) 8. r=cos(6/2)
5. r?=cos 6 10. r> =sin 6

11. ¥*=—sin @ 12. r> = —cos 0

Graph the lemniscates in Exercises 13—16. What symmetries do these
curves have?

13. r2 =4 cos 26 14. r?> =4 sin 26
15. r2 = —sin 26 16. r?> = —cos 20
Clanac Af Dalar Crimzac
Jlupc: UVl TVIGI GWUIVCDO

Use Eq. (1) to find the slopes of the curves in Exercises 17-20 at
the given points. Sketch the curves along with their tangents at these
points.

17. Cardicid. r = —1+4cos 8; 8

o NI ;=

18. Cardioid. r = —1+sin@; 6 =0, 7
2] A

10 Fniurlaaved roca » — cin 2 — t+ /A L2774
19. Four-feaved rose. r = sin 26; ==xx/4, =37 /4
20. Four-leaved rose. r =cos20; 6 =0, xn/2, =
limraranec

Liimalois

Graph the limacons in Exercises 21-24. Limacon (“/ee-ma-sahn”) is
Old French for “snail.” You will understand the name when you graph
the limacons in Exercise 21. Equatlons for limagons have the form

o b oAang D o T £
I—M_LULUDUUII——-UIUDIUU LIEIE arc 1our

21. Limacons with an inner loop

% GRAPHER Find the point:

26. Sketch the region defined by the inequalities 0 < r < 2 sec 6 and
—n/4 <6 <m/4

In Exercises 27 and 28, sketch the region defined by the inequality.

27.0<r<2-—2cos 6 28. 0<r*<cos ¥

intersections

29. Show that the point (2, 377/4) lies on the curve »r = 2 sin 26.

30. Show that (1/2,3m/2) lies o

T ) § il £,

n the curve r = —sin (6/3).

Find the points of intersection of the pairs of curves in Exercises
31-38.

31. r=1+4cosf, r=1—cos b

32. r=1+sin¢, r=1—siné
33. r=2sin6, r=2sin 260
34. r=cosf, r=1—cos ¥
35. r=4/2, 4sin 6

Exercises 39-42.
39. r2 =sin 20, r? = cos 20

N ya)
an 1 Y o an Y
‘lU.r—l-i—bUb,‘, r=1 bllﬁ
2 2
41. r=1, r=2sin 20
4 - 1 2 —9¢in 29
2. r=1, r°=12sn 26

Grapher Explorations

1 1 43. Which of the following has the same graph as r = 1 — cos 67
a) %-{—cosG b) r=%+sin0 a) r=—1-cosf
- - b) =1+cosh
22. Cardioids L . )
Confirm your answer with algebra.
al v—17noﬂ h) r— 1 1L qain 4O
aj r=1 CUS U uj ;= 1T oI U . .
o 44. Which of the following has the same graph as r = cos 26?
23. Dimpled limacons . .
; R a) r=—sin(20 +n/2)
a) r:f}—-l—cos@ b) r=%—sin0 b) r=-—cosv/2)
- - Confirm your answer with algebra.
24. Oval limacons . L .y . i oan
) 45. A rose within a rose. Graph the equation r = 1 — 2 sin 36
a) —r—=2-+cosé b) —r==2+4siné
’ 7 ' 46. The nephroid of Freeth. Grapnh the nephroid of Freeth:
46. phroid of Freeth. Graph the nephroid of Freeth:
Graphing Polar Inequalities . 4
r > - r=1+2sin-.
A& Qhatah tha vacinn Aafinad e tha fmaalitinag 1 - 20 ) ond 2
ade INCLLIL LT lelUll uciincu Uy uic uncquauuco 1L >7 =~ 4 aiu

47. Roses. Graph the roses r = cos m8 form = 1/3, 2, 3, and 7.



764 Chapter 9: Conic Sections, |

Graph the following splrals.

a) r=20

h) r=-0

¢) A logarithmic spiral: r = e®/1°

d) A hyperbolic spiral: r =38/6

e) An equilateral hyperbola: /

Theory and Examples

49. (Continuation of Example 6.) The simultaneous solution
equations

2=4cos @ )
r=1-—cos6 3)

in the text did not reveal the points (0, 0) and (2, 7r) in which
their graphs intersected.

a)  We could have found the point (2, ), however, by replacing

n
R
jo7]
=
o]
3
[¢]
—*
=
N
]
o
\n
c
=
<
m

w
W
-
o
o
S
[oV]
=
()
o]
]
=
Q
S
1)
—+
m
[

22 A ane O
I — 4 LU Vv

(—r)* =4 cos (0 +m) (4)
r? = —4cos 0.

Solve P.qs, (3) and (4) clmnlt';mpnncl to

is a common solution. (This will stlll
graphs intersect at (0, 0).)

b) The origin is still a special case. (It often is.) Here is one
way to handle it: Set »r =0 in Pn< (2) and (3) and solve
each equation for a corresponding value of 6. Since (0, 6)
is the origin for any 6, this will show that both curves pass

e T . L S, . Mo R Y A IR L o o, i N I -
urougn ne origin even 11 incy do so 10r diierent 7-vaiucs.

of the section, can anythi

the third symmetry? Give reasons for your answer.

*51. Find the maximum width of the petal of the four-leaved rose
r = cos 20, which lies along the x-axis.

*52. Find the maximum height above the x-axis of the cardioid r =
2 (1 +cos 8).

Suppose the perpendicular from the origin to line L meets L at the point Fy(ro, 6o),
with 7o > 0 (Fig. 9.59). Then, if P(r, 8) is any other point on L, the points P, P,
and O are the vertices of a right triangle, from which we can read the relation

\
NP, 0)
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\
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/
/\ r, SNt &)

r_O — e (O \
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r
r coc (A — O = ra
cos (O ) 1o.

\
/%\ \

o \,

The Standard Polar Equation for Lines

x If the point Py(rg, 65) is the foot of the perpendicular from the origin to the

O N\

9.59 We can obtain a poiar equation

IUI ||IIC l. Uy ICdUlllg LIIE ICIdI.IUII
ro/r = cos (6 — 6y) from triangle OPyP.

N line L, and ry > 0, then an equation for L is

r cos (6 — 6y) = rg.
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Section 9.5 Polar Coordinates and Graphs 789

//m\\
. (%,37") is the same point as (—%,%); r= —sin(k—gz) =—sin T = —% = (—% %) is on the graph = (% %’5)
is on the graph

.14cosf@=1—cos@=cosf=0=0=

T —
§ T=>I'—1,

points of intersection are ( 2) and (

intersection (0,0) is found by graphing.

. 2sin @ =2sin 20 = sin # = sin 20 = sin §

=2sinfcosf@=>sinfd—2sinfcosf@=0

1
2

=0=0,F, o0 —-L;0=0=>1=0, 0—3=>r=\/§,

1
and 0 = —% = 1 = —/3; points of intersection are W

(0,0),(\/",3) and( \/',_g) riaumze ]

= (sin 0)(1—2 cos ) =0 = sin d =0 or cos § =

.co80=1—cos@ =>2cosf=1=cosf =

N

; points of intersection are

U
-1
bol»—-

T
3
(l 1) and (%, _g). The point (0,0) is found by

graphing.

. 1_2sm20=>sm20—2=>20_7é 56" -1%1,12“ 1%24in26

=60 = 11r2 ?g, 11327'- , 11727" ; points of intersection are

(1,{'—2), (1,?—"2'),( ,11327") and(l,%’f). No other

points are found by graphing,.




