
AMBIGUITY PROBLEMS WITH POLAR COORDINATES

A given point in the plane can be represented by more than one pair of polar coordinates, and
Section 9.7 of Thomas and Finney, Calculus, Ninth Edition, discusses two problems related to this
fact.

(1) If we are given a curve C defined by an equation F (r, θ) = 0 and a point P with polar
coordinates (q, α), then P may lie on C even if F (q, α) 6= 0.

(2) If we are given two curves A and B defined by equations F (r, θ) = 0 and G(r, θ) = 0,
then there may be hidden points (q, α) lying on BOTH curves A and B such that (q, α)
is NOT a simultaneous solution of the given two equations. In other words, at least one
of F (q, α) or G(q, α) is nonzero.

Specific examples are given on pages 760 – 762 in the Ninth Edition of Thomas and Finney,
which addresses the second issue by suggesting that one graph the curves A and B to see if there are
any common points that are not given by simultaneous solutions of the equations. This is usually
effective, but it is not systematic or logically complete. We shall describe an analytic procedure for
finding all such hidden points and use it to solve examples like those in the text.

Copies of the relevant pages from Thomas and Finney are appended at the endof this file.

Points with the same polar coordinates

Since the problems in (1) and (2) arise because a point is representable by more than one set
of polar coordinates, it is best to begin by recalling when two pairs of polar coordinates (q, α) and
(s, β) define the same point in the plane. There are two distinct criteria:

(i) Both q and s are nonzero, and there is an integer n such that β = α+nπ and s = (−1)nq.

(ii) Both q and s are zero, and α and β are arbitrary.

These criteria are exactly the conditions under which the‘ equations q cos α = r cos α and
q sinα = r sinα are both satisfied.

Application to ambiguity issues

Here is the general criterion for determining whether a point with polar coordinates (q, α) lies
on the curve C defined by F (r, θ) = 0.

General condition for (1): If the curve C is defined by F (r, θ) = 0, then the point P with

polar coordinates (q, α) lies on C if and only if one of the following is true: (a) We have q 6= 0
and there is an n such that F ( (−1)nq, α + nπ) = 0. (b) We have q = 0 and there is some β such

that F (q, β) = 0.

General condition for (2): If the curves sA and B are defined by F (r, θ) = 0 and G(r, θ) = 0
respectively, then the point P with polar coordinates (q, α) lies on both A and B if and only

if one of the following is true: (a) We have q 6= 0 and there are integers m and n such that

F ( (−1)mq, α + mπ) = 0 and G( (−1)nq, α + nπ) = 0. (b) We have q = 0 and there are some β
and γ such that F (q, β) = 0 and F (q, γ) = 0.

Textbook examples and exercises usually have a crucial property which leads to simplified
criteria. In such examples the function H = F and (if applicable) G satisfy the periodicity

property

H(r, θ) = H(r, θ + 2π)
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for all r and θ. In particular, this holds when H can be written as a sum of terms of the form
f(r) sina θ cosb θ where a and b run through finite sets of integers (note that functions like sin kθ
and cos `θ are all polynomials in sin θ and cos θ). In such cases there are only two possibilities
for the values of the expressions H( (−1)nq, θ + nπ), and one can simplify the criterion (a) in the
general conditions as follows:

Specialized condition for (1): If the curve C is defined by F (r, θ) = 0 where F has the

periodicity property, then the point P with polar coordinates (q, α) lies on C if and only if one of

the following is true: (a) We have q 6= 0 and either F (q, α) = 0 or else F (−q, α + π) = 0. (b)
We have q = 0 and there is some β such that F (q, β) = 0.

Specialized condition for (2): If the curves A and B are defined by F (r, θ) = 0 and G(r, θ) = 0
respectively, then the point P with polar coordinates (q, α) lies on both A and B if and only if

one of the following is true: (a) We have q 6= 0 and either F (q, α) = G(q, α) = 0 or F (q, α) =
G(−q, α + π) = 0 or F (−q, α) = G(q, α) = 0. (b) We have q = 0 and there are some β and γ
such that F (q, β) = 0 and F (q, γ) = 0.

Proof of the main result(s)

Let Rect : R
2 → R

2 be the usual map from polar to rectangular coordinates which sends (r, θ)
to (r cos θ, r sin θ). To prove (1), note that Rect(s, α) lies on the curve defined by F (r, θ) = 0 if
and only if there is some (t, β) such that Rect(s, α) = Rect(t, β) and F (t, β) = 0. The conditions
for Rect(s, α) = Rect(t, β) are either s = t = 0 or s, t 6= 0 and there is some integer n such that
t = (−1)ns and β = α + nπ). The conclusion of (1) follows by substituting the conditions of the
second sentence into the first.

To prove (2), recall that the condition for a point Rect(s, α) to be on both curves is that there
are ordered pairs (s1, α1) and (s2, α2) which represent the same point in rectangular coordinates
and satisfy the equations F (s1, α1) = 0 and G(s2, α2) = 0. There are now two cases.

Suppose that Rect(s, α) = (0, 0). Then s = s1 = s2 = 0 and the condition for the origin to be
a point on both curves is that there are angles β and γ such that F (0, β) = 0 and G(0, γ) = 0.

Now suppose that Rect(s, α) 6= (0, 0). Then the condition above translates into the condition
that there are integers m and n such that F ( (−1)ms, α + mπ) = 0 and G( (−1)ns, α + nπ) = 0.

The specialized statements now follow from the previous discussion.

Application to ambiguity issues

We shall now apply the preceding criteria to the examples worked out on pages 760 – 762 of the
book by Thomas and Finney, and also to solve exercises 67 – 68 which are described on page 789
of Scharf and Weir, Instructor’s Solutions Manual Part I to accompany Thomas’ Calculus, Early

Transcendentals, Tenth Edition. A copy of that page is also appended at the end of this file.

EXAMPLE 5. We are given the curve F (r, θ) = r−2 cos 2θ = 0 and we want to show that the point
with polar coordinates (2, π/2) lies on it. According to the first specialized condition, this will hold
if either F (2, π/2) = 0 or F (−2, 3π/2) = 0. The first of these does not hold, but the second does
because F (−2, 3π/2) is equal to F (−2,−π/2), and as noted in the text the latter turns out to be
zero.

EXAMPLE 6. We want to find the common points to the curves defined by F (r, θ) = r2−4 cos θ = 0
and G(r, θ) = r − 1 + cos θ = 0. According to the second specialized condition, there are four parts
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to this, the first three of which are solving the three pairs of simultaneous equations as in (a) and
the last of which involves cases where r = 0.

One begins with the system of equations F (q, α) = G(q, α) = 0 as in the text, and this yields
two common points. Next, one considers the system F (q, α) = G(−q, α + π) = 0, which reduces to
r2 = 4 cos θ and −r = 1 + cos θ. Following the same pattern as on page 767 of the text, we obtain
the equation

−r = 1 + cos θ = 1 +
r2
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which further reduces to 0 = r2 + 4r + 1, so that r = ±2. For these choices of r we have

∓2 = 1 + cos θ

so that −1 ∓ 2 = cos θ. Since −3 = cos θ is impossible, we are left with the case where r = −2
and 1 = cos θ, so that the point with polar coordinates (−2, 0) also lies on the curve. Since the
polar coordinates (−2, 0) and (2, π) determine the same point, we conclude that (2, π) is a hidden
intersection point of A and B, as noted in the last paragraph of page 767.

The third part of the problem in our procedure is to examine the system F (−q, α + π) =
G(q, α) = 0, and in this case the first equation is equivalent to r2 = −4 cos θ. If we square the
second equation we obtain r2 = (1− cos θ)2, and if we combine the preceding two equations we find
that

−4 cos θ − 1 − 2 cos θ + cos2 θ

which is equivalent to 0 = (1 + cos θ)2. This implies that θ = π and r = 0. Strictly speaking, this
means that we have no solutions corresponding to the third part of the problem because at this
point we are only looking for solutions where the first polar coordinate is nonzero.

Finally, the fourth step is the one which decides whether or not the origin or pole lies on both
curves. All we need to do is find α and β such that F (0, α) = 0 and G(0, β) = 0. But we see
directly that F (0, π/2) = 0 and G(0, 0) = 0, and therefore it follows that (0, 0) is another hidden
intersection point of A and B. Furthermore, this also shows that there are no other common points
aside from the four that were found in the text.

EXERCISE 67. Here we want to find the intersection points of the two cardioids r = 1 ± cos θ.
Graphing these curves suggests that there are three common points, one at the origin and two
others at points on the y-axis that are symmetric with respect to the origin. We need to show that
our procedure yields all these points and no others.

The first step is to solve the simultaneous equations 0 = F (r, θ) = r − 1 + cos θ and 0 =
G(r, θ) = r − 1 − cos θ when r 6= 0. These yield cos θ = 0 and hence that θ = π/2 or 3π/2 and
consequently r = 1. Thus we have checked that the two points with polar coordinates (1,±π/2) lie
on the curve.

Next we consider the system 0 = F (r, θ) = G(−r, θ + π), The second equation is just 0 =
−r − 1 + cos θ, so we have the system of equations r = 1 − cos θ = −1 + cos θ. These yield the
impossible equation cos θ = 2, so there are no hidden points given by simultaneous solutions of the
second system.

Turing to the third system 0 = G(r, θ) = F (−r, θ + π), we have F (−r, θ + π) = −r − 1− cos θ,
so this system becomes r = −1− cos θ = 1+cos θ. These yield the impossible equation cos θ = −2,
so there are no hidden points given by simultaneous solutions of the third system.
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Finally, we must check to see whether there exist α and β such that F (0, α) = G(0, β) = 0.
The answer is yes, and we can choose α and β to be 0 and π respectively.

EXERCISE 68. Here we have the circle r = 2 sin θ whose radius is 1 and whose center has
rectangular coordinates (0, 1), and we also have the four leaf curve r = 2 sin 2θ whose center is the
origin and whose four leaves each lie in different quadrants of the coordinate plane.

We want to find the common points of the curves whose equations are F (r, θ) = r − 2 sin θ
and G(r, θ) = r − 2 sin 2θ. These yield the equation sin θ = sin 2θ, and if we solve these for θ we
find that sin θ = 0 or cos θ = 1

2
. For the first option we have θ = 0 or π, and for the second we

have θ = ±π/3. The first option θ = 0 or π implies r = 0, and although this is not strictly covered
by the conditions in the first part of the procedure we can see that F (0, 0) = G(0, 0) = 0, so that
(0, 0) lies on both curves. This means we can skip the fourth part of the procedure. Turning to
the second option, it implies that r = ±

√
3, and therefore we also see that the points with polar

coordinates (±
√

3,±π/3) also lie on both curves.

The second part of the problem involves the equations F (q, α) = G(−q, α+π) = 0, which leads
to the equation sin θ = − sin 2θ. The solutions to this equation are θ = 0 or π and θ = ±2π/3.
We have already considered the first option, and the second option again leads to r = ±

√
3, sop

that we obtain the points with polar coordinates (±
√

3,±2π/3) as common points of the curve.
However, these are not new because one can check that (±

√
3,±2π/3) represent the same points

as (∓
√

3,∓π/3) respectively.

Finally, the third part of the problem involves the equations F (−q, α) = G(q, α) = 0, which
leads to the equation − sin θ = sin 2θ. This is equivalent to the equation considered in the second
part of the problem, so it will yield nothing new. Therefore all the solutions are given by the
(extended) first part of the problem as above.
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AMBIGUITY PROBLEMS WITH POLAR COORDINATES

The relevant pages from the two cited references are attached.
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