Quiz 3 preparation

1. We begin by restating the identity to be verified:

$$
\sum_{k=1}^{n} \frac{2}{k(k+2}=\frac{3}{2}-\frac{2 n+3}{(n+1)(n+2)}
$$

If $n=1$ the left hand side equals $\frac{2}{3}$ and the right hand side equals $\frac{3}{2}-\frac{5}{6}=\frac{9}{6}-\frac{5}{6}=\frac{4}{6}=\frac{2}{3}$, so the identity is true if $n=1$.

We now need to show that if the identity is true for $n=m \geq 1$ then it is also true for $m+1$. The starting point is writing out the left hand side when $n=m+1$:

$$
\sum_{k=1}^{m+1} \frac{2}{k(k+2}=\left(\sum_{k=1}^{m} \frac{2}{k(k+2}\right)+\frac{2}{(m+1)(m+3)}
$$

Since the identity is known for $n=m$ we may rewrite the right hand side as follows:

$$
\frac{3}{2}-\frac{2 m+3}{(m+1)(m+2)}+\frac{2}{(m+1)(m+3)}
$$

Now we have to combine and simplify the second and third terms, and if we do so here is what we obtain:

$$
\begin{aligned}
& -\frac{(2 m+3)(m+3)}{(m+1)(m+2)(m+3)}+\frac{2(m+2)}{(m+1)(m+2)(m+3)}= \\
& -\frac{\left(2 m^{2}+9 m+9\right)-(2 m+4)}{(m+1)(m+2)(m+3)}=-\frac{2 m+5}{(m+2)(m+3)}
\end{aligned}
$$

The last step follows because $2 m^{2}+7 m+5=(m+1)(2 m+5)$.
2. We begin again by restating the identity to be verified:

$$
\prod_{k=1}^{n} \frac{k}{k+1}=\frac{1}{n+1}
$$

If $n=1$ the product on the left hand side consists of a single term, and direct inspection shows that both sides are equal to $\frac{1}{2}$. We now need to show that if the identity is true for $n=m \geq 1$ then it is also true for $m+1$. But then we have

$$
\prod_{k=1}^{m+1} \frac{k}{k+1}=\left(\prod_{k=1}^{m} \frac{k}{k+1}\right) \cdot \frac{m+1}{m+2}
$$

and since the identity is known for $n=m$ we may rewrite the right hand side as follows:

$$
\frac{1}{m+1} \cdot \frac{m+1}{m+2}=\frac{m+1}{m+2}
$$

This completes the proof of the inductive step (namely, if the identity is true for $n n=m$ it is also true for $n=m+1$). .
3. Once more we begin by restating the identity to be verified:

$$
\sum_{k=1}^{n} \frac{k}{2^{k}}=2-\frac{n+2}{2^{n}}
$$

We can directly verify this identity when $n=1$ because the left hand side collapses to a single term equal to $\frac{1}{2}$ and the right hand side simplifies to $2-\frac{3}{2}=\frac{1}{2}$. As before, we now need to show that if the identity is true for $n=m \geq 1$ then it is also true for $m+1$, and the first step is to split the left hand side into two pieces:

$$
\sum_{k=1}^{m+1} \frac{k}{2^{k}}=\sum_{k=1}^{m} \frac{k}{2^{k}}+\frac{m+1}{2^{m+1}}
$$

Since the identity is known for $n=m$ we may rewrite the right hand side as follows:

$$
2-\frac{m+2}{2^{m}}+\frac{m+1}{2^{m+1}}
$$

Finally, we can rewrite the second and third terms in this expression in the form

$$
-\frac{2 m+4}{2^{m+1}}+\frac{m+1}{2^{m+1}}=-\frac{(2 m+4)-(m+1)}{2^{m+1}}=-\frac{m+3}{2^{m+1}}
$$

and this shows that if the identity is valid for $n=m$ it is also valid for $n=m+1$.■
4. By now the pattern should be clear. We begin by restating the identity to be verified:

$$
\prod_{k=1}^{n} 4 k-2=\frac{(2 n)!}{n!}
$$

If $n=1$ then both sides simplify to 2 , so the identity is true in that case.
We now need to show that if the identity is true for $n=m \geq 1$ then it is also true for $m+1$. The first step is to rewrite the left hand side:

$$
\prod_{k=1}^{m+1} 4 k-2=\left(\prod_{k=1}^{m} 4 k-2\right) \cdot(4 m+2)
$$

Since the identity is known for $n=m$ the right hand side is equal to

$$
\left(\frac{(2 m)!}{m!}\right) \cdot(4 m+2) .
$$

In order to complete the inductive step, we need to show that the latter is equal to

$$
\frac{(2 m+2)!}{(m+1)!}=\left(\frac{(2 m)!}{m!}\right) \cdot \frac{(2 m+1) \cdot(2 m+2)}{m+1} .
$$

However, this follows because the last fraction on the right hand side simplifies to $4 m+2$, so we have shown that if the identity is valid for $n=m$ then it is also valid for $n=m+1$.

