
Quiz 3 preparation

1. We begin by restating the identity to be verified:

n
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If n = 1 the left hand side equals 2

3
and the right hand side equals 3
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3
, so the

identity is true if n = 1.

We now need to show that if the identity is true for n = m ≥ 1 then it is also true for m + 1.
The starting point is writing out the left hand side when n = m + 1:
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Since the identity is known for n = m we may rewrite the right hand side as follows:
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Now we have to combine and simplify the second and third terms, and if we do so here is what we
obtain:

−
(2m + 3)(m + 3)

(m + 1)(m + 2)(m + 3)
+

2(m + 2)

(m + 1)(m + 2)(m + 3)
=

−
(2m2 + 9m + 9) − (2m + 4)

(m + 1)(m + 2)(m + 3)
= −

2m + 5

(m + 2)(m + 3)

The last step follows because 2m2 + 7m + 5 = (m + 1)(2m + 5).

2. We begin again by restating the identity to be verified:
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1
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If n = 1 the product on the left hand side consists of a single term, and direct inspection shows
that both sides are equal to 1

2
. We now need to show that if the identity is true for n = m ≥ 1

then it is also true for m + 1. But then we have
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and since the identity is known for n = m we may rewrite the right hand side as follows:
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This completes the proof of the inductive step (namely, if the identity is true for nn = m it is also
true for n = m + 1).

3. Once more we begin by restating the identity to be verified:

n
∑

k=1

k

2k
= 2 −
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2n

We can directly verify this identity when n = 1 because the left hand side collapses to a single term
equal to 1

2
and the right hand side simplifies to 2 −

3

2
= 1

2
. As before, we now need to show that

if the identity is true for n = m ≥ 1 then it is also true for m + 1, and the first step is to split the
left hand side into two pieces:
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Since the identity is known for n = m we may rewrite the right hand side as follows:
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Finally, we can rewrite the second and third terms in this expression in the form

−
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and this shows that if the identity is valid for n = m it is also valid for n = m + 1.

4. By now the pattern should be clear. We begin by restating the identity to be verified:

n
∏

k=1

4k − 2 =
(2n)!

n!

If n = 1 then both sides simplify to 2, so the identity is true in that case.

We now need to show that if the identity is true for n = m ≥ 1 then it is also true for m + 1.
The first step is to rewrite the left hand side:
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Since the identity is known for n = m the right hand side is equal to

(
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)
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In order to complete the inductive step, we need to show that the latter is equal to
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.

However, this follows because the last fraction on the right hand side simplifies to 4m + 2, so we
have shown that if the identity is valid for n = m then it is also valid for n = m + 1.
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