volume of this structure is given by the formula

$$
\forall n \geq 1, \quad \sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2}
$$

from Theorem 4.2(d).
(a) Prove that result here by using induction.
(b) How many cubes are required to make the volume of the structure exceed the volume of a single cube with side length 10 inches?
(c) How many cubes are required to make the structure at least 6 feet tall?

In Exercises 5 through 22, do not use Theorems 4.2 and 4.3. Instead, give a proof by induction.
5. Show: $\forall n \geq 1, \quad \sum_{i=1}^{n}\left(3 i^{2}-i\right)=n^{2}(n+1)$.
6. Show: $\forall n \geq 1, \quad \sum_{i=1}^{n}\left(4 i^{3}-2 i\right)=n(n+1)\left(n^{2}+n-1\right)$.
7. Show: $\forall n \geq 1,1+5+9+\cdots+(4 n-3)=n(2 n-1)$.
8. Show: $\forall n \geq 1, \quad 1+4+7+\cdots+(3 n-2)=\frac{n(3 n-1)}{2}$.
9. Show: $\forall n \geq 1,3+5+7+\cdots+(2 n+1)=n(n+2)$.
10. Consider the sequence of binary numbers

$$
10,1010,101010, \ldots
$$

whose digits alternate between 1 and 0 . If we start our indexing at 0 , then the value of the nth number in this sequence is given by

$$
2^{2 n+1}+\cdots+2^{5}+2^{3}+2 .
$$

Show: $\forall n \geq 0, \quad 2+2^{3}+2^{5}+\cdots+2^{2 n+1}=\frac{2}{3}\left(4^{n+1}-1\right)$.
11. A binary tournament, such as the type used for the NCAA basketball tournament held each March, involves a number of teams t that is a power of 2 , say $t=2^{n+1}$. In the first round, the t teams are paired off into 2^{n} games, and only the winners advance to the second round. There are then 2^{n-1} games in the second round, 2^{n-2} games in the third round, and so forth, until the one game in the final round determines the champion. The total number of games played in this tournament is thus $2^{n}+2^{n-1}+$ $2^{n-2}+\cdots+1$. In the case that $t=64=2^{5+1}$, the number of games played is $32+16+8+4+2+1=63$. In general, show:
$\forall n \geq 0,1+2+4+8+\cdots+2^{n}=2^{n+1}-1$.
12. Show: $\forall n \geq 0, \quad 1+3+9+27+\cdots+3^{n}=\frac{1}{2}\left(3^{n+1}-1\right)$.
13. Show: $\forall n \geq 2, \quad \sum_{i=2}^{n} i 2^{i}=(n-1) 2^{n+1}$.
14. Show: $\forall n \geq 1, \quad \sum_{i=1}^{n} i 3^{i}=\frac{3}{4}\left[(2 n-1) 3^{n}+1\right]$.
15. Show: $\forall n \geq 1, \quad \sum_{i=1}^{n} i^{2} 2^{i}=\left(n^{2}-2 n+3\right) 2^{n+1}-6$.
16. Show: $\forall n \geq 1, \quad \sum_{i=1}^{n} i^{2} 3^{i}=\frac{3}{2}\left[\left(n^{2}-n+1\right) 3^{n}-1\right]$.
17. Show: $\forall n \geq 1, \quad \sum_{i=1}^{n}(i \cdot i!)=(n+1)!-1$.
18. A landscaper wants to have rows of bricks emanating from the backdoor of a house in the following pattern.

By adding the number of bricks in each row, we see that the total number of bricks needed to make n rows in this arrangement is $\sum_{i=1}^{n}(2 i-1)$.
Show: $\forall n \geq 1, \quad \sum_{i=1}^{n}(2 i-1)=n^{2}$.
19. Show: $\forall n \geq 1, \quad \sum_{i=1}^{2 n} i=n(2 n+1)$.
20. Show: $\forall n \geq 1, \quad \sum_{i=1}^{2 n} i^{3}=n^{2}(2 n+1)^{2}$.
21. Show: $\forall n \geq 1, \quad \sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$.
22. Show: $\forall n \geq 1, \sum_{i=1}^{n} \frac{2}{i(i+2)}=\frac{3}{2}-\frac{2 n+3}{(n+1)(n+2)}$.
23. If a fair coin is tossed i times, then the probability that the first occurrence of "heads" is on the i th toss is $\frac{1}{2^{i}}$. This is true because on each of the first $i-1$ tosses, there is a probability of $\frac{1}{2}$ that the coin will be "tails," and on the i th toss, there is a probability of $\frac{1}{2}$ that the coin will be "heads." Consequently, if the coin is tossed n times, then the probability that there is some occurrence of heads is $\sum_{i=1}^{n} \frac{1}{2^{i}}$.
Show: $\forall n \geq 1, \quad \sum_{i=1}^{n} \frac{1}{2^{i}}=1-\frac{1}{2^{n}}$.
24. Show: $\forall n \geq 0, \quad \sum_{i=0}^{n}\left(3^{i+1}-3^{i}\right)=3^{n+1}-1$.
25. Show: $\forall n \geq 1, \prod_{i=1}^{n} \frac{i}{i+2}=\frac{2}{(n+1)(n+2)}$.
26. Show: $\forall n \geq 1, \prod_{i=1}^{n} \frac{i}{i+1}=\frac{1}{n+1}$.
27. Let $r \in \mathbb{R}$. Show: $\forall n \geq 1, \prod_{i=1}^{n} r^{2 i}=r^{n(n+1)}$.
28. Let $m \in \mathbb{Z}$. Show: $\forall n \geq 1, \prod_{i=1}^{n} i^{m}=(n!)^{m}$.

