
Definition by recursion

Since the discussion of this topic in the notes is fairly abstract, we shall give some examples to 

illustrate it.

EXAMPLE 1.  Arithmetic progressions.   The basic underlying idea behind recursive 

definition is that we have a sequence of objects  {Ak} such that for each n the object  An  is 

defined in terms of the previous terms in the sequence  A0, ... , An – 1.  Perhaps the simplest types

of such definitions involve sequences such that  An  is defined entirely in terms of the preceding

object An – 1.   One example involves arithmetic progressions, where we are given an initial 

value  A0  and all subsequent values are given by  An  =  An – 1 + d  where  d  is some nonzero 

constant.  The point of the recursive definition theorems is that such data determine a unique 

sequence, and for arithmetic progressions it turns out that the recursively defined sequence is 

given by the formula    An  =  An – 1  + nd.  One can verify this by induction on n.  

Similar considerations hold for geometric progressions, for which the recursive formula has the

form  An  =  r An – 1  where  r  is some constant not equal to  0  or  1. 

EXAMPLE 2.  Definition of positive integral exponents.   For the sake of definiteness, we can

assume that we are working with positive integers, but the same considerations apply for any 

set equipped with an associative binary operation with a unit element which we shall call 1.  

We know that if n is a nonnegative integer, then x 
n indicates that there are exactly n factors of 

x.  For most practical purposes this works well, but suppose that we want to verify one of the 

following basic laws of exponents:
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First of all, we need a mathematically precise definition of exponents in terms of addition and 

multiplication, and the following recursive definition does this very simply:

x 
0   =   x,           x 

n   =   x 
(n – 1)    

⋅ ⋅ ⋅ ⋅ x           for each  n  ≥≥≥≥  1 

By constrution value number n in the sequence of powers of x is then defined in terms of the 

previous powers (in fact, only in terms of the immediately preceding one), so this is a standard 

example of a recursive definition.



   

Having defined positive integral powers, we shall now derive the first law of exponents 

algebraically.  Let  a be fixed, and let S(b) denote the statement  x 
ax 
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a + b
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Suppose now that S(b) is known to be true, so we wish to prove that S(b + 1) is true from what 

we have assumed.    Then we have the following chain of implications:
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The first equality is true by definition, the second by associativity of multiplication, the 

third by the induction hypothesis in the proof, the fourth again by definition, and the 

fifth by associativity of integer addition.  This string of equations proves the statement 
S(b + 1). 


