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IV. Relations and functions

IV.1 : Binary relations

101. The mistake is that we have no way of knowing whether there is any y such that xR y
is true. An extreme case is where the relation is empty. This relation is automatically symmetric
and transitive since there are no ordered pairs to consider, but it clearly is not reflexive. There are
also plenty of less drastic examples. In particular, we can take the example such that xR y is true
if and only if x = y and x, y 6= 0.

102. The hypotheses ensure that aR# c, bR# d and dR# e. Therefore R# consists of at least
the following ordered pairs:

(a, a) (a, c)
(b, b) (b, d) (b, e)

(c, a) (c, c)
(d, b) (d, d) (d, e)
(e, b) (e, b) (e, e)

or equivalently

(a, a) (a, c)
(c, a) (c, c)

(b, b) (b, d) (b, e)
(d, b) (d, d) (d, e)
(e, b) (e, d) (e, e)

The binary relation consisting S of these ordered pairs is in fact reflexive, symmetric and transitive,
and hence is an equivalence relation containing R. Since R# is the unique minimal equivalence
relation containing R, it follows that S = R. In particular, the equivalence classes are given by
{a, c} and {b, d, e}.
103. We shall refer to the file solutions92f17.figures.pdf for drawings which may help
explain the underlying ideas; as usual, the proof must be written so that it does not logically depend

upon these drawings.

The first step is to show that if (i, j) ∈ E, then every point of the form (i + t, j + t) in B —
where t runs through all admissible integers such that the point in question belongs to B — also
lies in E. In other words, if i′ − j′ = i− j, then (i′, j′) E (i, j). For points in B the difference values
i − j are the 15 integers between ± 7, so this shows that there are at most 15 equivalence classes
(in the first drawing, the squares with i − j = CONSTANT are on the diagonal lines and have
the same color). To prove the assertion in the first sentence, observe that (i, j) R (i + ε, j + ε)
for ε = ±1 by definition, and by definition of E this yields (i, j) E (i + ε, j + ε). The statement
for general values of t now follows by repeated application of the final assertion in the previous
sentence and the transitivity of E.

Next, let F be the binary relation with (i′, j′) F (i, j) if i′ + j′ and i + j are both even or
both odd. This is an equivalence relation by one of the examples in the notes and the fact that
two ordered pairs are F are related if and only if they have the same values under the function
ϕ : B → {EVEN,ODD} whose value is determined by whether i + j is even or odd. The definition
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of R implies that if (i, j) R (p, q) then both i+j and p+q are even or odd, and therefore (i, j) F (p, q)
whenever (i, j) R (p, q). It follows that (i, j) F (p, q) whenever (i, j) E (p, q), and since F has two
equivalence classes the equivalence relation E must also have at least two equivalence classes.

Finally, we need to show that E has exactly two equivalence classes. The idea is similar to
that of the first step; namely, if (i, j) ∈ E, then every point of the form (i+ t, j − t) in B — where t
runs through all admissible integers such that the point in question belongs to B — also lies in E.
The main difference in the argument is the need to observe that we also have (i, j) R (i + ε, j − ε)
for ε = ±1 by the definition of R. By the same reasoning as in the first step, this implies that if
i′ + j′ = i + j, then (i′, j′) E (i, j). — To conclude the argument, it suffices to observe that the
set of all (i, j) ∈ B with i + j = 9 the difference i − j takes all odd values between −7 and +7,
while the set of all (i, j) with i + j = 8 takes all even values between −6 and +6 (in the second
drawing, observe how the two lines with slope −1 cut through all the lines with slope +1). This
proves that there are at most two equivalence classes for E, and by the preceding paragraph there
must be precisely two equivalence classes.

104. It turns out that, in order to make things less repetitive, the best place to start is by
observing that if [x] = [y] then x S y. This follows from the reflexive property of the equivalence
relation R2. Note that this also yields the reflexive property for S.

Suppose now that x S y, so that [x] R2 [y]. Since R2 is an equivalence relation, this means
that [y] R2 [x], which in turn implies that y S x. Finally, suppose that x S y and y S z, so that
[x] R2 [y] and [y] R2 [z]. Since R2 is transitive we have [x] R2 [z], and this yields x S z, so that S

is an equivalence relation on X.

IV.2 : Partial and linear orderings

101. (a) If a and a′ are greatest elements of X, then a ≥ x and a′ ≥ x for all x ∈ X. In
particular, this means a ≥ a′ and a′ ≥ a, The latter combine to imply a = a′.

Likewise, if b and b′ are least elements of X, then b ≤ b′ and b′ ≤ b, and the latter combine to
imply that b = b′.

(b) We can take the examples to be the various closed, open and half open intervals in the real
line with endpoints 0 and 1. Specifically,

[0, 1] is an example satisfying (i),
(0, 1] is an example satisfying (ii),
[0, 1) is an example satisfying (iii), and
(0, 1) is an example satisfying (iv).

102. (a) Suppose that X has n elements but no maximal element. Then given x = x0 in x we
can find x1 ∈ X such that x1 > x0. Repeating this process, for each k we can find some xk ∈ X
such that xk > · · · > x1 > x0. These are k + 1 distinct elements in X, and therefore when n = k
we obtain a contradiction. The source of the contradiction is the assumption that X has n elements
but no maximal element, so this must be false. Therefore the finite set X must have a maximal
element.

The argument for minimal elements is similar. In fact, if R is a partial ordering on X and we
define Rop to be the converse relation aRop b if and only if bR , then Rop is also a partial ordering,
with the maximal elements of Rop given by the minimal elements of R and vice versa. Since Rop

has a maximal element, it follows that R has a minimal element.
Finally, the integers Z, rationals Q and reals R are examples of partially ordered sets which

do not have either a maximal or a minimal element.
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(b) Suppose now that X is linearly ordered with maximal elements x and y. By the linearity
of the ordering, either x ≤ y or y ≤ x. On the other hand, by maximality we know that x > y does
not hold in the first case and y > x does not hold in the second. Therefore in either case we have
x = y.

103. (a) Consider the partial ordering on the set {1, 2, 3, 6} of positive integers which evenly
divide 6, such that a|b if and only if a evenly divides b. Then both 2 and 3 are immediate predecessors
of 6, and both of the former are also immediate successors of 1.

(b) Suppose that x has immediate successors s and t. By the linearity of the ordering, either
s ≤ t or vice versa. Assume first that s ≤ t. Since both are immediate predecessors of x, then
s, t < x and there are no values of y or z such that s < y < x or t < z < x. Since s ≤ t we know
that s ≤ t < x, and since s is an immediate predecessor this can only happen if s =. We can treat
the case where t ≤ s similarly.

Similarly, if x has immediate predecessors p and q we have p ≤ q or vice versa. Now the opposite
ordering to a linear ordering is also linear (why?), and immediate successors in the original linear
ordering correspond to immediate predecessors in the opposite linear ordering, so we can derive the
corresponding result about immediate successors from the preceding paragraph.

IV.3 : Functions

101. The empty set is an initial object because for each set S there is a unique function ∅ → S;
namely, the function whose graph is the empty set. A nonempty set A cannot be an initial object,
for in this case there are always two maps into {1, 2}; namely the constant functions whose values
everywhere are 1 and 2 respectively.

A one point set {p} is a terminal object, for if A is a nonempty set then the only map into {p}
is the map whose value is always p, and if A is empty then there is only one map by the preceding
paragraph. On the other hand, if a set B contains more than one element, then for every nonempty
set A there are at least two functions by the reasoning in the previous paragraph, so B cannot be
a terminal object.

102. (i) Following the hint, define f by f(a, 1, c) = (a, c, 1) if a ∈ A and f(b, 2, c) = (b, c, 2)
if b ∈ B. We can show this map is a 1–1 correspondence by constructing the inverse function g,
which is given by g(a, c, 1) = (a, 1, c) if a ∈ A and g(b, c, 2) = (b, 2, c) if b ∈ B. Checking that g of
and f og are identity mappings is straightforward.

(ii) The defining formulas show that there is at most one such function because they give the
values at all points of A q B, but we also need to verify that we actually have a function, and to
do so we need to describe its graph. Let Γf and Γg denote the graphs of f and g respectively, and
consider the image G of

Γf q Γg ⊂ (A q C) × (B q C)

under the mapping h described in the first part of the problem. To see that this is the graph of a
function, it is only necessary to check that for each point p of A q B there is a unique point in G
whose first coordinate is p. If p comes from A, then the only such point in G is (a, 1, f(a)), and if
p comes from B, then the only such point is (b, 2, g(b)).

IV.4. Composite and inverse functions

101. (a) The interval [0, 1].

(b) The interval [−1, 1].
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(c) The union A ∪ B, where A is the union of all intervals of the form [2kπ, (2k + 1
6
)π] such

that k runs through all integers, and B is the union of all intervals of the form [(2k+ 5
6
)π, (2k+1)π]

such that k runs through all integers.—Recall that sin 30circ = 1
2
.

(d) The entire real line.

102. (a) This is the set of all points (t, 2t) such that 0 ≤ t ≤ 1, which is just the set of all (x, y)
such that 0 ≤ x ≤ 1 and y = 2x.

(b) We need to find all x such that x ∈ [0, 1] and 2x ∈ [0, 1]. Note that the second condition
implies the first, so the set of all such x is the closed interval [0, 1

2
].

(c) This is the set of all points (t, 2t) such that t2 +(2t)2 ≤ 1. The left hand side is just 5t2, so
the set is just the set of all t such that t2 ≤ 1

5
. Therefore the set in question is the set of all (x, y)

such that y = 2x and |x| ≤ 1/
√

5.

103. The “only if” directions are established in Theorem IV.4.7, so we shall only prove the
reverse “if” implications here.

(a) Suppose that f
[

f−1[C]
]

= C for all subsets C; we need to prove that f is onto. But suppose
that y ∈ and set C equal to {y}; in this case we find that y = f(x) for some x ∈ f−1[C] ⊂ X.
Therefore x ∈ f [Y ] and hence f is onto.

(b) Suppose that A = f−1 [ f [A] ] for all subsets A; we need to prove that f is 1–1. Note first
that f is 1–1 if and only if for each y ∈ Y the set f−1[{y}] consists of at most one point.

If y 6∈ f [X] then clearly f−1[{y}] = ∅. Suppose now that y = f(X) for some x ∈ X,and take
A = {x}. Then the hypothesis and y = f(X) imply that {x} = f−1 [ {y} ], so in all cases f−1[{y}]
consists of at most one point. Hence f is 1–1.

104. If f [A − B] = f [A] − f [B], then f [B] ∩ f [A − B] = f [B] ∩ (f [A] − f [B]). Since the
second factor on the right hand side contains no elements of f [B], the intersection must be empty.
Conversely, suppose that f [B] and f [A−B] are disjoint. Regardless of whether or not this is true,
we have f [A]−f [B] ⊂ f [A−B]. Finally, if y ∈ f [A−B] then it follows immediately that y ∈ f [A],
and since f [B] and f [A − B] are disjoint we also know that y 6∈ f [B]. Therefore y ∈ f [A] − f [B],
so that f [A − B] ⊂ f [A] − f [B], and since the reverse inclusion has been shown we indeed have
f [A − B] = f [A] − f [B].

105. Let f : X → Y be a function, and suppose that A ⊂ B ⊂ X. If y ∈ f [A], write y = f(a)
for some a ∈ A. Then A ⊂ B implies that a ∈ B and hence y = f(a) ∈ f [B], proving the first
inclusion.

Once again let f : X → Y be a function, and suppose now that C ⊂ D ⊂ Y . If x ∈ f−1[C]
then f(x) ∈ C. Then C ⊂ D implies that f(x) ∈ D, so that x ∈ f−1[D], proving the second
inclusion.

106. We shall construct a 1–1 correspondence in the reverse direction using the second part of
Exercise 102 from the previous section. Specifically, let i1 and i2 denote the inclusions of A − B
and A∩B in A, let j1 and j2 denote the injections of these sets into (A−B)q (A∩B), and define
f : (A − B) q (A ∩ B) −→ A to be the unique map such that f oj1 = i1 and f oj2 = i2. We shall
prove that f is 1–1 onto.

First of all, we shall verify that f is 1–1. Since f ojt = it for t = 1, 2 and inclusions are 1–1,
it follows that the restriction of f to each summand in the disjoint union is 1–1. Hence the only
way f could not be 1–1 would be for some points u ∈ A−B and v ∈ A∩B to satisfy f(u) = f(v),
and the only way the latter could happen would be if u and v were in the intersection of A − B
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and A∩B. But these two sets are disjoint, so we cannot find u and v such that f(u) = f(v). This
shows that f is 1–1.

To show that f is onto, let a ∈ A. Then there are two cases to consider depending upon
whether a ∈ A − B or a ∈ A ∩ B. In the first case a = i1(a) = f(j1(a)), and in the second case
a = i2(a) = f(j2(a)); hence in both cases a lies in the image of f , and therefore it follows that f is
onto.

IV.5. Constructions involving functions

101. We shall first construct a 1–1 correspondence (B × C)A ↔ (B)A × (C)A. Let pB :
B × C → B and pC : B × C → C denote the coordinate projections which send (b, c) to b and c
respectively. Then we can define a mapping (B ×C)A → (B)A × (C)A by sending h : A → B ×C
into its coordinate functions pB

oh and pC
oh. The basic properties of ordered pairs show that if

h, h′ : A → B × C satisfy pB
oh = pB

oh′ and pC
oh = pC

oh′. then h = h′ (two ordered pairs are
equal if and only if their first and second coordinates are equal). Therefore our mapping is 1–1.
To see that it is onto, note that if hB : A → B and hC : A → C are functions then the function
h : A → B × C defined by

h(a) = ( hB(a), hC(a) )

satisfies pB
oh = hB and pB

oh = hB .

Next, we shall construct a 1–1 correspondence CAqB ↔ CA ×CB. Let jA : A → A q B and
jB : B → A q B be the injections of the summands defined by jA(a) = (a, 1) and jB(b) = (b, 2)
respectively. Then we can define a mapping CAqB ↔ CA × CB by sending f : A q B → C
into the summand restrictions f ojA and f ojB . This mapping is 1–1, for if f ojA = f ′ ojA and
f ojB = f ′ ojB then f and f ′ agree on the subsets jA[A] and jB [B]. Since the union of these two
pieces is all of A q B, it follows that f = f ′ and hence our mapping is 1–1. To see that it is onto,
use the solution to Exercise IV.2.102(ii); this result states that if gA : A → C and gB : B → C are
functions, then there is a unique function f : A q B → C such that f ojA = gA and f ojB = gB .

IV.6. Order types

101. (a) We shall construct a new partially ordered set D such that for each pair of distinct
primes p and q the partially ordered sets D and D(p, q) have the same order type, and we shall
do this by considering the unique factorization of integers into products of prime numbers. Every
divisor of pq has the form paqb where a, b ∈ {0, 1, 2}, and paqb divides pcqd if and only if a ≤ c
and b ≤ d. The latter relationship also defines a partial ordering on {0, 1, 2}2 := D, and the map
sending paqb to (a, b) is 1–1 onto and strictly order preserving. Therefore D and D(p, q) have the
same order type.

(b) Note that D(p, q) has 9 elements. On the other hand, E(p, q) consists of all paqb where
a ∈ {0, 1, 2, 3, 4} and b ∈ {0, 1}, so that E(p, q) has 8 elements. Since D and E(p, q) have different
numbers of elements, they cannot have the same order type.

102. We shall follow the hint, and in particular we shall use the concept of level L as defined
in the hint. If we are looking at partially ordered sets, then the level of an element cannot exceed
4 (the number of elements in the set) and is always positive. We shall also denote the numbers
of elements with level k (k = 1, 2, 3, 4) by λk. Also, we shall say that a pair of elements (x, y) is
strictly ordered (with respect to the partial ordering) if and only if x < y. Finally, as in Lipschutz
we shall write x << y to indicate that x is an immediate predecessor of y or (equivalently) y is an
immediate successor to x.
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We start with some general observations. First, if L = m where m ∈ {1, 2, 3, 4} then we have
λk > 0 for 1 ≤ k ≤ m and λk = 0 for k > m. Furthermore, we have

∑

k λk = 4 (= the number
of elements in the partially ordered sets under consideration). Before proceeding further we make
another elementary but useful observation.

CLAIM. If two elements of the partially ordered set P have the same level, then neither is an

immediate successor or predecessor of the other.

This is true because if one is an immediate successor or predecessor of the other then the
(absolute value of) the difference between their levels is 1.

There are actually two parts to this exercise: One is to show that there are at most 16 distinct
order types, and the other is to show that there are at least 16 order types. We shall first find 16
partial orderings such that every partially ordered set with four elements has the same order type
as one of our examples, and then we shall show that the order types for the examples are distinct.
Hasse diagrams for the 16 types are displayed in the file solutions92f17.figures.pdf, and it
might be helpful to look at these while reading through the classification given below.

FIRST PART. We shall construct 16 examples of partial orderings on a set with four elements
such that every partially ordered set with four elements has the same order type as (at least) one
of the examples. The discussion splits into cases depending upon L.

THE CASE L = 1. If L = 1 then we have λ1 = 4 by the preceding paragraph. Now if X is a
finite partially ordered set which contains elements two elements such that one is strictly less than
the other, then it contains two elements such that one is an immediate successor of the other, for if
x < y then we can take z to be a minimal element such that x < z. It follows that the level of z is
strictly greater than the level of x. However, if L = 1 then all elements have level 1 and therefore
there can be no pair of elements x, y such that x < y. In other words, if L = 1 in X and x, y ∈ X
satisfy x ≤ y, then x = y. Therefore if P is a partially ordred set with L = 1 and elements a, b, c, d
then the partial ordering consists of all pairs (x, y) ∈ P × P such that x = y. In particular, there
is exactly one order type with 4 elements such that L = 1.

THE CASE L = 4. In this case we can label four elements of the partially ordered set
P as a, b, c, d such that a << b << c << d. Since P has four elements, this list contains all the
elements of the set, and it follows that P is linearly ordered. Every other linear ordering is given
by relabeling a, b, c, d and therefore all linear orderings have the same order type. To summarize,
there is exactly one order type with 4 elements such that L = 4.

THE CASE L = 2. In the remaining two cases where L = 2 or 3, there will be more than
one order type. When L = 2 then by the constraints at the beginning of the proof the numbers of
elements λ1, λ2 with levels 1 and 2 respectively fall into three cases; namely, (λ1, λ2) = (3, 1), (2, 2)
or (1, 3). We shall analyze these three subcases separately.

Subcases with (λ1, λ2) = (3, 1). Let a, b, c denote the elements of level 1, and let d denote
the element of level 2. By construction d has at least one immediate predecessor, which we might
as well denote by a. If the latter is the only immediate predecessor, then b and c do not have
immediate successors, and it follows that the only strictly ordered pair in the relation is a << d.
— Two other possibilities remain, in which d has two or three immediate predecessors respectively.
If there are two, then up to relabeling the only strictly ordered pairs are a << d and b << d, while
if there are three then the only strictly ordered pairs are a << d, b << d and c << d. Hence there
are three order types with (λ1, λ2) = (3, 1).

Subcases with (λ1, λ2) = (1, 3). Let a be the unique element of level 1, and denote the
remaining elements, all of which have level 2, by b, c, d. Each of the latter has an immediate
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predecessor, and since there is only one element of level 1 we must have a << b, a << c and
a << d. Hence there is only one order type with (λ1, λ2) = (1, 3).

Subcases with (λ1, λ2) = (2, 2). We shall denote the elements of level 1 by a and c, and
we shall denote the elements of level 2 by b and d. By construction, each of c, d is an immediate
successor of at least one of a, b. We need to go through all the possilities systematically.

The first possibility is that only one of a, b is an immediate predecesssor of a level 2 element.
Relabeling if necessary, we might as well assume that b is the element which is not an immediate
predecessor. Then the only strictly ordered pairs must be a << c and a << d, and there is only
one possible order type under the constraint in the first sentence of this paragraph.

The next possibility is that each of a, b is an immediate predecessor of a level 2 element. As
before, we can relabel the elements so that a << c. At this point there are several further options,
depending upon the strict inequalities relating elements at the two levels:

(A) b << c, b << d and a << d.

(B) b << d, but c is not an immediate successor of b and d is not an immediate successor of
a.

(C) b << c, b << d, but d is not an immediate successor of a.

(D) a << d, b << d, but c is not an immediate successor of b.

The last two options define the same order type because the permutation which interchanges
both a, b and c, d is an order-isomorphism which sends one partial ordering to the other. — To
summarize, there are at most four possible order types with (λ1, λ2) = (2, 2).

If we combine the discussions of all subcases when L = 2, we have shown that there are at
most 8 order types for a partially ordered set with 4 elements and L = 2.

THE CASE L = 3. In this case there is a linearly ordered subset with three elements which
we can express as a << b << c. There is only a fourth element d in the set. The possibilities
for (λ1, λ2, λ3) are (1, 1, 2), (1, 2, 1) and (2, 1, 1). Once again, we shall analyze these three subcases
separately.

Subcases with (λ1, λ2, λ3) = (1, 1, 2). In this case d has level 3 and as such must have an
immediate predecessor. The only possible immediate predecessor is b; we can exclude c because it
also has level 3, and we can exclude 1 because in that case d would have level 2.

Subcases with (λ1, λ2, λ3) = (1, 2, 1). In this case d has level 2 and as such must again have
an immediate predecessor. The only possible immediate predecessor is a, and there are two options,
depending upon whether or not d << c.

Subcases with (λ1, λ2, λ3) = (2, 1, 1). In this case d has level 1 and has no immediate prede-
cessors. There are now three further options, depending what is true about immediate successors
to d:

(A) d has no immediate successors.

(B) d << b

(C) d << c.

To summarize, there are at most three possible order types with (λ1, λ2, λ3) = (2, 1, 1). If we
combine this with the previously discussed subcases, we conclude that there are at most 6 order
types for a partially ordered set with 4 elements and L = 2.
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The preceding analysis of cases shows that there are at most 1, 8, 6 and 1 order types on a set
with four elements when L = 1, 2, 3, 4 respectively, If we add up these upper estimates, we obtain
a maximum of 1 + 6 + 8 + 1 = 16 possible order types.

SECOND PART. We need to show that no two of the types described in the first part are the
same. Our method is based upon the following metamathematical principle cited in the notes:

The conceptual meaning of order-isomorphism is that if the partially ordered sets P and
Q are order-isomorphic, then P has a given order-theoretic property if and only if B does.

In particular, P is finite if and only if Q is finite, in which case they have the same numbers of
elements; furthermore, in this case they have the same numerical sequences λ1, λ2, , ... involving
immediate successors and predecessors, and also the same numerical invariant L (the last k such
that λk > 0). Therefore the proofs that the order pairs are distinct can be broken down into cases
as in the first part.

THE CASE L = 1. In this case we showed that there was only one order type and described
an example (with no strict inequalities).

THE CASE L = 4. In this case we showed that there was only one order type and described
an example (a standard linear ordering).

THE CASE L = 2. By the comments at the beginning of the discussion of the second part,
if two finite partially ordered sets are order isomorphic, they have the same values for the numbers
λk, so we can split the discussion into subcases depending upon whether (λ1, λ2) = (3, 1), (2, 2) or
(1, 3).

Subcases with (λ1, λ2) = (3, 1). We described three partial orderings, in which the elements
of level 1 with an immediate successor are 1, 2 and 3 respectively. Now the number of level 1
elements with an immediate successor is one of the properties that is the same for two partially
ordered sets that are order-isomorphic, so this means there are exactly three order types in this
subcase.

Subcases with (λ1, λ2) = (1, 3). In this case we showed that there was only one order type
and described an example (one maximal element of level 2 which is an immediate successor to each
minimal element of level 1).

Subcases with (λ1, λ2) = (2, 2). In the first part we narrowed the list to at most four order
types; each satisfies exactly one of the following properties and none of the others; these correspond
to the figures on the second line of the second drawing on page 2 of solutions92f17.figures.pdf.

(a) Each element of level 1 has one immediate successor, and different elements of level 1 have
different immediate successors.

(b) One element of level 1 has two immediate successors, and the other has no immediate
successors.

(c) One element of level 1 has two immediate successors, and the other has one immediate
successor.

(d) Each element of level 1 has two immediate successors.

Thus the order types of the four partially ordered sets in this subcase are distinct, and if we combine
this with the previous discussion we see that there are 8 distinct order types when (λ1, λ2) = (2, 2).
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THE CASE L = 3. Once again we can split the discussion into subcases, depending on
whether (λ1, λ2, λ3) is (1, 1, 2), (1, 2, 1) or (2, 1, 1).

Subcases with (λ1, λ2, λ3) = (1, 1, 2). In this case we showed that there was only one order
type and described an example.

Subcases with (λ1, λ2, λ3) = (1, 2, 1). We showed that there were at most two possible orbit
types, and they are different because in one of them there are two elements of level 2 with an
immediate successor and in the other there is only one such element with an immediate successor.

Subcases with (λ1, λ2, λ3) = (2, 1, 1). We showed that there were at most three possible orbit
types. In one of them there is an element of level 1 with no immediate successor, in the second
both elements of level 1 have an immediate successor of level 2, and in the third both elements of
level 1 have immediate successors, but for one of them the immediate successor has level 2 and for
the other the immediate successor has level 3.

Combining the preceding observations, we see that there are 6 distinct order types when L = 3,
and furthermore by combining the cases for all possible values of L we see that there are exactly
16 order types.

Acknowledgment. Many of the ideas in the preceding argument are taken from pages
73–75 of the book, Chapter Zero: Fundamental Ideas of Abstract Mathematics (Second Edition),
by C. Schumacher (Addison-Wesley, Boston-etc., 2001).

103. Given a ∈ X let L(a) be the set of all x ∈ X such that x ≤ a, and observe that a is the
greatest element of L(a). We claim that the map L : X → P(X) is 1–1, and a ≤ b if and only if
L(a) ⊂ L(b).

By construction a is the largest element of L(a), so L(a) = L(a′) implies that the largest
elements must be the same; in other words, a = a′. If a ≤ b then x ∈ L(a) implies x ≤ a ≤ b, and
therefore L(a) ⊂ L(b). Conversely, if L(a) ⊂ L(b) then in particular a ∈ L(b), which means that
a ≤ b.

9


