
SOLUTIONS TO FURTHER EXERCISES FOR

MATHEMATICS 144 — Part 3

Fall 2017

V. Number systems and set theory

V.1 : The Natural Numbers and Integers

101. First recall the following two facts which are established in the notes: For every a we have
−a = (−1)a and (−1)2 = 1.

(a) We have −0 = (−1) · 0, and since zero times a number is always zero, it follows that the
right hand side is equal to 0.

(b) For all a, b, c we have

a − (b − c) = a + (−1)(b − c) = a +
(

(−1)b + (−1)(−1)c
)

= a + (−b + c)

which is what we wanted to prove.

(c) For all a, b, c, d we have

(a − b) + (c − d) = (a + (−1)b) + (c + (−1)d) =
(

(a + (−1)b) + c ) + (−1)d
)

=

(

a+((−1)b+c) ) + (−1)d
)

=
(

a+()+(−1)b) ) + (−1)d
)

=
(

(a+c)+(−1)b) ) + (−1)d
)

=

(a + c) +
(

(−1)b + (−1)d
)

= (a + c) + (−1)(b + d) = (a + c) − (b + d)

which is what we wanted to prove.

102. (a) We shall prove the contrapositive: If a 6= 0 and b 6= 0 then ab 6= 0. There are four
cases depending upon whether a and b are positive or negative.

Suppose both are positive. The set of positive integers is assumed to be closed under multi-
plication, so it follows that ab > 0.

Suppose both are negative. In this case both −a and −b are positive, so as above we have
(−a)(−b) > 0. Since ab = (−a)(−b), we again have ab > 0.

Suppose one is positive and one is negative. Suppose that a > 0 > b, so that −b is positive
and hence a · (−b) = −ab is positive. In this case ab < 0.

Similarly, if a < 0 < b, so that −a is positive and hence (−a) · b = −ab is positive. In this case
we also have ab < 0.

(b) Suppose c 6= 0 and ac = bc. Then 0 = ac− bc = (a− b)c. We are assuming that c 6= 0, and
therefore by the first part of this exercise we know that a − b = 0, so that a = b.

103. The first part is elementary but tedious, so we shall only describe the main idea. In
order to show that two ordered pairs are equal, it is necessary and sufficient to show that their first
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coordinates are equal and likewise for their second coordinates. We then use the algebraic identities
for the coordinates to verify their analogs for the ordered pairs.

One counterexample to (a) from the previous exercise is a = (1, 0) and b = (0, 1).

104. If a < x < a + 1 then 0 < x − a < 1, and we know that there is no integer between 0 and
1. Therefore such an x cannot exist.

105. If B is the set of integers b such that a ≤ b for all a ∈ A, then we are given that B
is nonempty. Since some positive number lies in A, we know that B is contained in the positive
integers. Therefore B has a minimal element b∗ by the Well-Ordering Property. If b∗ ∈ A then b∗

is a maximal element of A because a ∈ A implies a ≤ b∗. To finish the proof, it suffices to eliminate
the possibility that b∗ 6∈ A. In that case a < b∗ for all a and hence a ≤ b∗ − 1 for all a ∈ A. This
contradicts the defining condition that b∗ is the least integer which is greater than or equal to each
element of A. Hence b∗ is a maximal element of A.

106. (a) If a < b then b−a > 0, and therefore (b+ c)− (a+ c) = b−a > 0, so that a+ c < b+ c.
Conversely, if the latter holds, then reverse the steps in the argument to show that a < b.

(b) If a − b < a − c then c − b = (a − c) − (a − b) = b − c > 0, so that c < b. Conversely, if the
latter holds, then reverse the steps in the argument to show that a − b < a − c.

(c) If a < 0 and ab > ac then ab − ac = a(b − c) > 0. Since xy = (−x)(−y) the latter is
equivalent to (−a)(c − b) > 0. Now uv > 0 and u > 0 implies that v > 0 (otherwise v < 0 implies
that −uv = u · (−v) > 0), and therefore c−b > 0, so that c > b. Conversely, if c > b and a < 0 then
(−a)(c− b) > 0. If we simplify the left hand side of this inequality we obtain a(b− c) = ab−ac > 0,
so that ab > ac.

(d) This is just a duplication of (c).

(e) If c ≥ 0 and a ≥ b, then a − b ≥ 0. Since the product of two nonnegative numbers is
nonnegative (positive if both factors are positive, and zero if at least one factor is zero), it follows
that ac − bc = (a − b) · c ≥ 0, which is the same as saying that ac ≥ bc.

V.2 : Finite induction and recursion

101. We begin by restating the identity to be verified:

n
∑

k=1

k2 =
n(n + 1)(2n + 1)

6

If n = 1 both sides simplify to 1.

We now need to show that if the identity is true for n = m ≥ 1 then it is also true for m + 1.
The starting point is writing out the left hand side when n = m + 1:

m+1
∑

k=1

k2 =

m
∑

k=1

k2 + (m + 1)2

Since the identity is valid when n = m, the right hand side is equal to

m(m + 1)(2m + 1)

6
+

6(m + 1)2

6
=

(m3 + 3m2 + m) + (6m2 + 12m + 6)

6
=

m3 + 9m2 + 13m + 6

6
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and we can verify directly that the numerator in the right hand side is equal to (m+1)(m+2)(2m+
3); the details of this elementary calculation are left to the reader. To summarize, the calculations
show that if the formula is valid for n = m then it is also valid for n = m + 1, completing the
inductive step. Therefore the identity is valid for all nonnegative integers n by the Weak Principle
of Finite Induction.

102. This is a duplication of the preceding exercise.

103. TYPOGRAPHICAL ERRORS ALERT. The upper limit of the summation should be
k = n − 1, and the denominator on the right hand side should be 3 (this applies to an earlier
version of exercises93f17.pdf).

As in Exercise 101, we begin by restating the identity to be verified:

n−1
∑

k=1

k(k + 1) =
n3 − n

3

If n = 2 the left hand side is just 1 · 2 = 2 and the right hand side is

8 − 2

3
= 2

so the result is true in that case.

We now need to show that if the identity is true for n = m ≥ 2 then it is also true for m + 1.
Once again we split the left hand side into two pieces:

m
∑

k=1

k(k + 1) =

m−1
∑

k=1

k(k + 1) + m(m + 1)

Since the formula is valid for n = m we can rewrite the right hand side as follows:

m3 − m

3
+

3m(m + 1)

3
=

m3 + 3m2 + 3m

3
=

(m + 1)3 − (m + 1)

3

and hence the validity of the formula for n = m ≥ 2 implies its validity for n = m + 1, completing
the proof by finite induction.

104. TYPOGRAPHICAL ERROR ALERT. The terms of the summation should be 5k − 4 (this
applies to an earlier version of exercises93f17.pdf).

As before, Step Zero is to restate the formula:

n
∑

k=1

(5k − 4) =
n(5n − 3)

2

We can check directly that both sides of this formula simplify to 1 if n = 1. We now need to show
that if the formula is valid for n = m then it is also valid for n = m + 1.

Assuming the formula is valid for n = m, the left hand side of the next case is given by

m+1
∑

k=1

(5k − 4) =

m
∑

k=1

(5k − 4) + (5m + 1) =
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m(5m − 3)

2
+ (5m + 1) .

We can now write 5m + 1 = (10m + 2)/2 and simplify the right hand side to obtain

5m2 + 7m + 1

2
=

(m + 1)(5m + 2)

2

which implies that the formula is true for n = m + 1, thus completing the inductive step.

105. TYPOGRAPHICAL ERROR ALERT. The upper limit of the summation should be k = n+1
(this applies to an earlier version of exercises93f17.pdf).

As usual, it is convenient to start with the formula to be verified:

n+1
∑

k=1

k · 2k = n 2n+2 + 2

If n = 1 both sides simplify to 10 by direct calculation, so the next step is to show that the validity
of the formula for n = m ≥ 1 implies its validity for n = m+1. Following the previous pattern, we
obtain the equations

m+2
∑

k=1

k · 2k = m 2m+2 + 2 + (m + 2) 2m+2 =

(2m + 2) 2m+2 + 2 = (m + 1) 2m+3 + 2

which verifies the formula for n = m + 1 and thus completes the proof by finite induction.

106. TYPOGRAPHICAL ERROR ALERT. The expression should be 22n − 1 (this applies to an
earlier version of exercises93f17.pdf).

If n = 1 the expression reduces to 3, which is clearly divisible by 3 with no remainder. If we
know that 22m − 1 is evenly divisible by 3 with m ≥ 1, then

22(m+1) − 1 =
(

22(m+1) − 22m
)

+
(

22m − 1
)

= (22 − 1) · 22m +
(

22m − 1
)

.

The first term on the right is just 3 ·22m, and the induction hypothesis implies that the second term
is evenly divisible by 3, so the original expression is a sum of two pieces, each of which is divisible
by 3. Hence the original expression is also divisible by 3, completing the proof of the inductive
step.

107. In this exercise we shall use the Strong Principle of Finite Induction. By definition we
have [k/2] ≤ k/2 and therefore we also have 2 [k/2] ≤ k.

It is a straightforward exercise to verify the inequality for n = 1 and n = 2. Suppose that the
inequality is valid for all n < m, where m ≥ 3, so that m > [m/2] ≥ 1. By the Strong Principle of
Finite Induction we then have a[m/2] ≤ [m/2] ≤ m/2, so that 2 ·a[m/2] ≤ m, which is the inequality
for n = m. Therefore the validity of the conjecture for 1 ≤ n < m implies its validity for n = m,
proving the result by (strong) induction.

108. By definition we know that an is odd if n = 1 or n = 2. Suppose that we know that an is
odd for all n < m, where m ≥ 3; note that the preceding inequality implies m− 2 ≥ 1. Since am−2

is odd, write it in the form 2k + 1 for some integer k. It then follows that

am = am−2 + 2am−1 = 2k + 2am−1 + 1
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and hence am is odd, completing the proof of the (strong) inductive step.

109. This can be solved using the method in the file strong-induction.pdf. We need to
show that every integer ≥ 25 can be written as 4p+9q +1, where p and q are nonnegative integers.
Let P (n) be the statement that n can be so written if n ≥ 25, and let P (n) be the tautological
statement 1 = 1 for other values of n. Then P (n) is automatically valid for n ≤ 24, and the
following identities show that P (n) is valid for n = 25, 26, 27, 28:

25 = (6 · 4) + 1

26 = (4 · 4) + (1 · 9) + 1

27 = (2 · 4) + (2 · 9) + 1

28 = (3 · 9) + 1

So now we know that P (n) is true for all n < 29, and we need to show that the validity of P (n)
for n < m and m ≥ 29 implies the validity of P (m).

Since m ≥ 29 we have m−4 ≥ 25, and since P (m−4) is valid we can write m−4 = 4a+9b+1,
where a and b are nonnegative integers. Therefore we also have m = 4(a + 1) + 9b + 1, so that
P (m) is valid, and this completes the proof of the (strong) inductive step.

GENERALIZATION. The same method and some simple results on congruences modulo a positive
integer also yield the following result: Let p, q ≥ 3 be two integers that are relatively prime.

Then every integer ≥ (p−1)(q−1) can be written in the form ap+bq, where a and b are nonnegative

integers.

110. This is a variation of a problem mentioned in the lectures: Show that every multiple of 5

cents which is greater than or equal to $0.20 can be realized with dimes and quarters. We begin
by recalling the solution to that problem: Write the amount as A × $0.05; then we need to show
that for A ≥ 4 we can find nonnegative integers D (the number of dimes) and Q (the number of
quarters) such that A = 2D + 5Q. If A = 4 we can solve the problem by taking D = 2 and Q = 0,
and more generally if A = 2k we can solve the problem by taking D = k and Q = 0. If A ≥ 5
is odd, so that A = 2k + 1 where k ≥ 2, then we can solve the problem by taking Q = 1 and
A = 2k − 3.

If we are allowed to add 4 pennies, then the problem translates into determining which integers
can be written as A = 10p+25q+r, where r is an integer satisfying 0 ≤ r ≤ 4. Now r is the integral
remainder of A when the latter is divided by 5, so A can be realized if and only if A−r = 10p+25q
where p and q are nonnegative integers. The result of the first paragraph implies that the only
multiples of 5 which cannot be so realized are 5 and 15. Therefore the only amounts which cannot
be realized by the allowed sets of coins are the following numbers of cents:

5, 6, 7, 8, 9, 15, 16, 17, 18, 19

Note that $0.01 through $0.04 definitely can be realized, for there is no stipulation that we must
use positive numbers of dimes or quarters.

111. Let Sn = n3 + (n + 1)3 + (n + 2)3, and let P (n) be the statement that 9 evenly divides
Sn. Then P (1) is true because 1 + 8 + 27 = 36 = 9 · 4. We now need to show that if P (n) is valid
for n = m then it is also valid for n = m + 1. This will follow if we can show that the difference
Sm+1 − Sm is divisible by 9.

To verify the statement in the preceding sentence, observe that

Sm+1 − Sm = (m + 3)3 − m3 = 9m2 + 27m + 27
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and the right hand side is divisible by 9. Therefore if P (m) is valid then so is P (m + 1), and this
completes the verification of the inductive step.

112. Let B be the set of all integers of the form a−m where m is given in the statement of the
exercise and a ∈ A. Then it follows that B is nonempty and 0 ∈ B. Furthermore, if n ∈ B then
n+m ∈ A, and by assumption this means that n+m+1 ∈ A; then latter shows that if n ∈ B then
n + 1 ∈ B. Therefore by the Weak Principle of Finite Induction the set B contains all nonnegative
integers. It follows that if k ≥ m, then k − m ≥ 0, so that k − m ∈ B and hence k ∈ A.

V.3 : Finite sets

101. (a) This follows because Z ∩ (Y − Z) = ∅ and Y = Z ∪ (Y − Z).

(b) The subsets A − B, B − A and A ∩ B are pairwise disjoint by their definitions. Therefore
by (a) we have the following:

|A| = |A ∩ B| + |A − B|
|B| = |A ∩ B| + |B − A|
|A ∪ B| = |A ∩ B| + |A − B| + |B − A|

If we add the first two identities and make a substitution using the third, we obtain the equation
|A|+ |B| = |A∪B|+ |A∩B|, and the identity in the problem can be derived by subtracting |A∩B|
from both sides.

Addendum to the preceding exercise. The following extension of (b) to three sets is often
useful (for example, in the next exercise):

|A ∪ B ∪ C| = |A| + |B| + |C| − |B ∩ C| − |C ∩ A| − |A ∩ B| + |A ∩ B ∩ C|

This formula implicitly assumes that A, B and C are finite sets.

SOLUTION. Write V = A ∪ B, so that |V ∪ C| = |V | + |C| − |V ∩ C|. We then have

|A ∪ B ∪ C| = |A ∪ B| + |C| − |(A ∪ B) ∩ C| =

|A| + |B| + |C| − |A ∩ B| − |(A ∪ B) ∩ C| = |A| + |B| + |C| − |A ∩ B| − |(A ∩ C) ∪ (B ∩ C)| =

|A| + |B| + |C| − |A ∩ B| − ( |A ∩ C| + |B ∩ C| − |(A ∩ C) ∩ (B ∩ C)| )
and the right hand side is equal to the right hand side of the formula to be verified because
A ∩ B ∩ C = (A ∩ C) ∩ (B ∩ C).

102. We shall use the notation in the hint: Let L be the set of tiles, T the triangular tiles, R
the red tiles and W the wooden tiles. The S = L − T is the set of triangular tiles, B = L − R is
the set of blue tiles, and P = L − W is the set of plastic tiles. — It follows that L is the union of
the following eight pairwise disjoint subsets:

R ∩ W ∩ T , R ∩ W ∩ S , R ∩ P ∩ T , R ∩ P ∩ S ,

B ∩ W ∩ T , B ∩ W ∩ S , B ∩ P ∩ T , B ∩ P ∩ S

The conditions of the problem then yield the following information on the numbers of elements in
these sets:

6



|L| = 144
|T | = 75
|R| = 69
|W | = 68
|R ∩ W | = 36
|T ∩ W | = 40
|T ∩ R| = 38
|T ∩ W ∩ R| = 23

We then have the following:

P ∩ B ∩ S = L − (W ∪ R ∪ T )

and by repeated applications of the previous exercise we also have

|P ∩ B ∩ S| = |L| − |W ∪ R ∪ T | =

|L| − ((|W | + |R| + |T | − |R ∩ T | − |T ∩ W | − |W ∩ R| + |W ∩ R ∩ T |) =

144 − (68 + 69 + 75 − 38 − 40 − 36 + 23) = 23 .

103. There are 9 single digit numbers, and none have repeated digits since there is no room for
repetition. There are also 90 two digit numbers, and the 9 multiples of 11 have repeated digits, so
there are 81 with no repetitions. Three digit numbers are clearly the most substantial class. There
are 900 such numbers; consider the possible choices which yield NO repeated digits:

There are 9 possibilities for the hundreds place.

For each choice of the first digit, there are 9 possibilities for the tens place; note that 0
can occur in this place but not in the hundreds place.

For each choice of the first two digits (and there are 81 of them), there are 8 possibilities
for the tens place.

By an extension of the counting principle in Exercise V.3.1 (p. 30 of set-theory-exercises.pdf),
there are 81 · 8 = 648 three digit numbers with no repetitions. If we add the numbers of one, two
and three digit numbers with no repetitions, the sum is equal to 738. Note that the number of
three digit numbers with repetitions is equal to 900−648 = 252, so there are 252+9 = 261 numbers
between 1 and 999 with repeated digits.

V.4 : The real number system

101. (=⇒) If x ≤ y, then 0 < n implies ) < 1
n and hence x = x + 0 < y + 1

n .

(⇐=) Suppose that x ≤ y is false, so that x > y and 0 < x − y. Then there is some n > 0
such that ) < 1

n < x − y, so that y + 1
n < x. Hence x is not less than y + 1

n for some n, and we
have proved the (logically equivalent) contrapositive of the “if” statement.

102. The hint to graph the function should indicate that the function is increasing for x ≥ 0
and has the line y = 2

3 as a horizontal asymptote as x → ∞. We need to justify this symbolically.
Note first that the function is defined over all the nonnegative reals because the denominator is
always positive when x ≥ 0.
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The standard rule for finding the derivative of a quotient implies that

d

dx

(

2x + 5

3x + 8

)

=
2(3x + 8) − 3(2x + 5)

(3x + 8)2
=

1

(3x + 8)2
> 0

and therefore the rational function f(x) = (2x + 5)/(3x + 8) is increasing for x ≥ 0. Since we also
have

lim
x→∞

2x + 5

3x + 8
=

2

3

it follows that 2
3 is the desired least upper bound.

103. Let M be the greatest lower bound of A. Then x ∈ neg (A) implies −x ∈ A, so that
M ≤ −x and hence x ≤ −M . Therefore −M is an upper bound for neg (A).

Suppose now that c is an arbitrary upper bound for neg (A); we claim that −c is a lower
bound for A. To see this, note that x ∈ A implies −x ∈ neg (A), so that −c ≤ −x. Since M is the
greatest lower bound we must have −c ≤ −M . But the latter implies that M ≤ c, and therefore
M is the least upper bound for neg (A).

104. If 0 < a < b, where a and b are real numbers, then there is some rational number u such
that a < u < b, and similarly there is also some rational number v such that u < v < b. If

y = u +
(v − u)

√
2

2

then u < y < v and y is irrational (If it were rational, then
√

2 would also be a rational number. To
see this, suppose that y is rational and solve for

√
2 as a rational expression in u, v and y). Since

a < u < y < v < b, it also follows that a < y < b.

105. We claim that the condition in (a) is equivalent to x ≤ y and the condition in (b) is
equivalent to y ≤ x. If these are true, then x = y if and only if both (a) and (b) are valid.

Suppose that x ≤ y. Then a < x and x ≤ y imply a < y. On the other hand, if x > y then
there is some rational number a such that y < a < x, so that a < x but a is not less than y.

Suppose next that y ≤ x. Then b > x and x ≥ y imply b > y. On the other hand, if x < y
then there is some rational number b such that y > b > x, so that b < x but b is not greater than
y.

Note. The conclusion of this exercise is equivalent to the Condition of Eudoxus which is employed
in Euclid’s Elements to work with irrational proportions. For further information see pages 4–6 of
the first document cited below and also the (entire) second document cited below.

http://math.ucr.edu/ res/math133-2013/math153/history03.pdf

http://math.ucr.edu/ res/math133-2013/math153/history03b.pdf

V.5 : Further properties of the real numbers

101. If the number is rational and we express the decimal series as usual by 0.a1a2a3a4... then
we know that there will be some positive integers N and P such that m ≥ N implies am = am+P .
By construction we know that am = 1 if m = q! for some q and 0 otherwise. On the other
hand, the condition in the first sentence would imply that there is an infinite sequence of values
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m,m + P,m + 2P, ... such that 1 = am = am+P = am+2P = ..., so we need only show that there
are no possible values for N and P .

Assume to the contrary that we can find N and P with the desired properties. The decimal
expansion consists of mostly zeros with some scattered ones in the k! positions. Suppose that the
first m ≥ N with am = 1 is m = n!. Then m + P = (n + q)! for some q > 0. This implies that
the repeating sequence in the decimal expansion has exactly q ones, with zeros in all the remaining
terms.

Consider now the terms in the periodic repetition {am+P , · · · , am+2P−1}. This sequence
is supposed to contain the same number q of ones as the sequence {am, · · · , am+P−1}. Since
m + P = (n + q)!, this means that m + 2P = (n + 2q)!, and consequently we must have

(n + q)! − n! = P = (n + 2q)! − (n + q)! .

This should look suspicious, for we know that n! grows extremely rapidly. Here is one way of
proving that the displayed equation cannot be valid: Start with the identity (k + 1)! − k! = k · k!,
and write the difference expressions as telescoping sums:

(n + q)! − n! =

q−1
∑

j=0

(j + n + 1)! − (j + n)! =

q−1
∑

j=0

(j + n) · (j + n)!

(n + 2q)! − (n + q)! =

q−1
∑

j=0

(j + n + q + 1)! − (j + n + q)! =

q−1
∑

j=0

(j + n + q) · (j + n + q)!

We shall conclude by showing that the sums on the right hand sides of these equations are unequal
— in fact, each term of the first sum is strictly less than the corresponding term of the second.
But this follows directly from the elementary inequality (j + n) · (j + n)! < (j + n + q) · (j + n + q)!
(the first and second factors of the first expression are strictly less than their counterparts in the
second expression).

The preceding shows that there is no possible value for the period P , and accordingly the
number defined in the exercise must be an irrational number.

102. Every number t ∈ (0, 1] has a unique decimal expansion of the form 0.a1a2a3a4... where
infinitely many of the digits ak are nonzero; therefore the digits ak are uniquely determined by
t. This means that the expression 0.a10a20a30a40... is also uniquely determined by t, and we can
extend the function to [0, 1] by sending 0 to itself. Let f be this function; we claim this function is
increasing. First of all, if t > 0 then some ak > 0, so that f(t) > 0. Suppose now that t < s where
s has the form 0.b1b2b3b4...; in this case we have either a1 < b1 or else ak = bk for k ≤ Q (some
Q ≥ 1) and aQ+1 < bQ+1. In the first instance we clearly have

0.a10a20a30a40... < 0.b1b2b3b4...

(look at the first decimal place!) and in the second we have

0.a10a20a30a40...aQ0aQ+1... < 0.b10b20b30b40...bQ0bQ+1...

so that the first 2Q decimal places of f(t) and f(s) are equal, but the next decimal digit for f(t)
is less than the corresponding decimal digit for f(s).
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103. One can compute the binary expansion of these numbers using the procedure described
in the proof of Theorem V.5.13 on pages 116–117 of set-theory-notes.pdf, replacing 10 by 2 at
the appropriate points. Here are the end results:

1
3 = 0.0101010101010101010101010101...

1
4

= 0.01 (or 0.00111111111111111111...)

1
5 = 0.0011001100110011001100110011...

1
6 = 0.00101010101010101010101010101...

1
7

= 0.001001001001001001001001001001...

1
8 = 0.001 (or 0.000111111111111111111...)

1
9 = 0.000111000111000111000111000111...

In each case the apparent periodic pattern keeps repeating itself.
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