
SOLUTIONS TO FURTHER EXERCISES FOR

MATHEMATICS 144 — Part 4

Fall 2017

V. Number systems and set theory

V.2 : Finite induction and recursion

113. One basic property of the degree is that deg (f + g) = deg (f) + deg (g). The idea of the
proof is to proceed by induction on the degree. If deg (f) = 1 then it is not possible to write f as a
product of two polynomials whose degrees are both positive (we cannot find two positive integers
whose sum equals 1), so the result is true in that case. Assume now that the result is true whenever
deg (f) < n, where n ≥ 2, and let p be a polynomial with degree n. If p is irreducible, then we
are done. If not, then p = q1q2 where deg (q1) and deg (q2) are both positive; clearly we must have
deg (qi) < n for i = 1, 2. Therefore by the Strong Principle of Finite Induction we know that q1

and q2 are products of irreducible polynomials. Therefore p = q1q2 is also a product of irreducible
polynomials.

113. (i) If c = a + b
√

5 let c∗ = a − b
√

5. Then |N(a + b
√

5)| = |cc∗|. Direct calculation yields
the identity

(c1c2)
∗ = c∗1 · c∗2

(the same sort of derivation which proves the corresponding result for complex numbers) and
therefore we have

|N(xy)| = |(xy)(xy)∗| = |xyx∗y∗| = |xx∗yy∗| = |xx∗| · |yy∗| = |N(x)| · |N(xy)|

which is what we wanted to prove.

(ii) If |N(x)| = 1 then we have x∗ = x−1 by the given fact that xx∗ = 1. Conversely, if
x−1 ∈ Z[

√
5] then we have 1 = N(1) = |N(x)||N(x−1)|. Since a product of two positive integers is

1 if and only if both factors are equal to 1, this implies |N(x)| = 1.

(iii) As in Exercise 113, use the Strong Principle of Finite Induction, but start with |N(x)| = 2.
In that case, if x = yz then 2 = |N(x)| = |N(y)|·|N(z)| implies that either |N(x)| = 1 or |N(y)| = 1.
Suppose now that the result is known for all k < n, where n ≥ 3. Suppose that |N(x)| = n. Then
either x is irreducible or else x = yz with |N(x)| = |N(y)| · |N(z)| and 1 < |N(y)|, |N(z)| < n. In
the first case the conclusion is automatically true, and in the seccond the conclusion follows because
y and z are both products of irreducible elements by the Strong Principle of Finite Induction.
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VI. Infinite constructions in set theory

VI.2 : Infinite Cartesian products

101. By definition an element of the Cartesian product is a function u : A → ∪α Xα such
that uα = Xα for all α. If x lies in the product, then xβ ∈ Xβ is impossible because Xβ is empty.
Therefore the product must also be empty.

VI.3 : Transfinite cardinal numbers

101. The defining condition uses nothing about U or W; the existence of a 1–1 onto mapping
does not change if we view the sets as members of one family or the other.

102. We are given |A| = |C|, so we need only show |B| = |C|. But |B| ≤ |C| = |A| and
|A| ≤ |B|, so |C| = |A| = |B| follows from the equivalence relation properties of cardinality and the
Schröder-Bernstein Theorem.

103. If |A| ≤ |B|, then there is a 1–1 map f : A → B. If A′ = f [A], then f defines a 1–1
correspondence between A and A′, and consequently we have |A| = |A′| where A′ ⊂ B.

VI.4 : Countable and uncountable sets

101. There should be a hypothesis that A 6= ∅ in this exercise.

Each of the sets An ×{n} is finite, and hence we have 1–1 maps from A into N×{n} for each
n. We can merge them into a 1–1 map from String (A) into N × N, and hence the set of strings
has cardinality ≤ ℵ0. On the other hand, we have a 1–1 mapping from N into the set of strings by
taking a ∈ A and sending n to (a, ..., a;n + 1), where (a, ..., a) ∈ An+1 has a in each coordinate.
We can now apply the Schröder-Bernstein Theorem to say that the cardinality of the set of strings
is ℵ0.

VII . The Axiom of Choice and related topics

VII.1 : Nonconstructive existence statements

NOTE. Throughout this section we assume that the Axiom of Choice is valid.

101. Let β be the cardinality of the set of irrational numbers, so that 2ℵ0 = β + ℵ0. Now β

must be infinite (otherwise the right hand side wouold be ℵ0), so we know that β = β + ℵ0. Since
the right hand side equals 2ℵ0 , the same must be true for the left hand side.

102. For each subset W pick a basis b1, · · · , bm of W , and define a mapping from Gm(Rn) to
(Rn)

m
= R

mn sending W to (b1, · · · , bm). This shows that |Gm(Rn)| ≤ |Rmn| = |R|. To prove the
reverse inequality, let e1, ...(etc.) denote the standard unit vector basis of R

n, and consider the map
sending t ∈ R to the span of e1 + te2, e3, · · · , em+1 in R

n, with the convention that the list of unit
vectors is empty if m = 1 (note that all the vectors lie in R

n because m < n and hence m+1 ≤ n).
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The m × n matrices with these rows are in row reduced echelon forms, and no two of them are
equal, so the subspaces spanned by different sets are distinct. This means that |R| ≤ |Gm(Rn)|, so
the result follows (once more) from the Schröder-Bernstein Theorem.

103. The polynomial in the statement should be assumed to be nonconstant.

Since and (n− 1)-dimensional vector subspace of R
n is defined by a homogeneous linear equa-

tion, the preceding exercise shows that |R| ≤ |H|.
To prove the reverse inequality, we start by verifying that the cardinality of the nonconstant

polynomials in R[t] is equal to |R|. There is a 1–1 mapping of R into R[t] given by sending a ∈ R

to t + a. In each degree d there are |(R − {0}) × R
d| polynomials of degree d; the exceptional first

factor is present because the term in the top degree is nonzero. Hence the number of polynomials
of degree d > 0 is |R|, so the number of polynomials of an arbitary positive degree is ℵ0×|R| = |R|.
Now the set of all nonconstant polynomials maps onto H by the map sending the polynomial f to
the set V (f) ⊂ R

n of all points where f = 0. This map from polynomials to hypersurfaces is onto
(but not 1–1!), and therefore |H| is less than or equal to the cardinality of the set of nonconstant
polynomials. Since the latter cardinality is equal to |R|, it follows that |H| ≤ |R|. Once again we
can apply the Schröder-Bernstein Theorem to conclude that |R| ≤ |H|.

3


