P.S. on the Strong Principle of Finite Induction

The condition $n \geq 44$ in strong-induction.pdf cannot be extended to $n \geq 43$. This can be seen by enumerating all expressions $5 p+12 q$ where p and q are nonnegative integers such that $p \leq 8$ and $q \leq 3$; the constraints on p and q are needed for $5 p+12 q$ to be less than 44 .

Here is a list of possibilities. Note that none of the expressions below is equal to 43 :

- $\quad 5 p+0 \cdot 12$ is a number ending in 5 .
- $\quad 5 p+12=12,17,22,27,32,37,42$ and numbers ≥ 47.
- $\quad 5 p+24=24,29,34,39$ and numbers ≥ 44.
- $\quad 5 p+36=36,41$ and numbers ≥ 46.

We can reorganize the preceding data to describe the positive integers not representable as $5 p+12 q$ where p and q are nonnegative integers:

- No number ≤ 44 ending in 3 or 8 (9 non-representable examples).
- No number ≤ 35 ending in 1 or 6 (7 non-representable examples).
- No number ≤ 20 ending in 4 or 9 (4 non-representable examples).
- No number ≤ 10 ending in 2 or 7 (2 non-representable examples).

In contrast, standard theorems about the integers imply that every integer n can be written in the form $5 p+12 q$ if we allow p and q to be positive, negative or zero.■

