
Mathematics 144, Winter 2022, Review for Examination 1

Solutions

Cunningham, Exercises 1.1

1. Let X be a large set containing A and B. Then the hypothesis a 6∈ A−B translates
to a 6∈ A ∩ (X − B), so that a ∈ X − (A ∩ (X −B)) = (X − A) ∪ B. Since we also have
a ∈ A, the only alternative is a ∈ B.

2. Taking contrapositives, we conclude that x 6∈ B implies x 6∈ A. Therefore x ∈ C−B
implies x ∈ C −A.

3. We are given that x ∈ A and x 6∈ B implies x ∈ C. We want to prove that y ∈ A
and y 6∈ C implies y ∈ B. Suppose this is false, so that we also have y 6∈ B. Then the first
sentence implies that y ∈ C, contradicting our assumption that y 6∈ C. The source of this
contradiction was our assumption that y 6∈ B, so this must be false and therefore we must
have y ∈ B.

4. If x ∈ A then the hypotheses imply x ∈ B and x ∈ C, so that x ∈ B ∩ C, and
therefore x ∈ B ∩ C.

5. If x ∈ A, then A ⊂ B implies x ∈ B. Therefore B ∩ C = ∅ implies x 6∈ C, so that
x ∈ B = C and hence x ∈ B − C. It follows that A ⊂ B − C.

6. Let S = A ∪B ∪ C. If x ∈ A− (B − C) then by definition

x ∈ A ∩ (S − (B − C)) = A ∩ (S − (B ∩ (S − C))) = A ∩ ((S −B) ∪ C) =

(A ∩ (S −B)) ∪ (A ∩ C)

and since we have A−B = A ∩ (S −B) and A ∪C ⊂ C it follows that x ∈ (A−B) ∪C.

7. First of all, A is not empty because the empty set is contained in C for every
choice of C. If x ∈ A but x 6∈ C, then A − B ⊂ C implies that x 6∈ A ∩ B. Since
A = (A−B) ∩ (A ∩B), this forces the conclusion that x ∈ A ∩B, and hence the latter is
nonempty.

1



Cunningham, Exercises 2.1

12. This is one of the two DeMorgan Laws.

13. This is the other DeMorgan Law.

14. Suppose that x ∈ (A − B) ∩ (C − B). Then x ∈ A − B and x ∈ C − B imply
x ∈ A and x ∈ C, so that x ∈ A ∩ C. Since we are also given that x 6∈ B, it follows that
x ∈ (A∩C)−B, so that (A−B)∩ (C−B) ⊂ (A∩C)−B. Conversely, if x ∈ (A∩C)−B,
then x ∈ A, x ∈ C and x 6∈ B imply x ∈ A−B and x ∈ C−B implies x ∈ (A−B)∩(C−B),
so that (A ∩ C)−B ⊂ (A−B) ∩ (C −B).

15. These were done in the course notes.

18. Suppose that x ∈ A. then A ⊂ B and B ∩ C = ∅ imply that x ∈ B but x 6∈ C, so
that x ∈ B − C.

19. We are given that x ∈ A − B ⊂ C and A 6⊂ C. The last condition implies that
there is some x ∈ A such that x 6∈ C. We claim that x ∈ B; if this were false, then we
would have x ∈ A − B, and since A − B ⊂ C it follows that x ∈ C. This contradicts our
choice of x such that x 6∈ C. The source of the contradiction is our assumption that x 6∈ B,
so we must have x ∈ B. Since we are given x ∈ A it follows that x ∈ A ∩ B and hence
A ∩B is nonempty.

20. Suppose first that A ⊂ B. If C ∈ P(A) then C ⊂ A, and since A ⊂ B we also have
C ⊂ B, so that C ∈ P(B).

Conversely, suppose that P(A) ⊂ P(B). If x ∈ A then {x} ∈ P(A) ⊂ P(B), and since
x ∈ P(B) we must have x ∈ B because B is the big union of the family P(B).

21. If E ∈ P(A) ∪ P(B) then E ⊂ A or E ⊂ B. In either case we have E ⊂ A ∪ B,
which means that E ∈ P(A ∪B). Therefore P(A) ∪ P(B) ⊂ P(A ∪B).

27. By definition
⋃
F is the union of all sets C such that C ∈ F. We are given that

A ⊂ C0 for some C0 ∈ F. If x ∈ A, then A ⊂ C0 implies x ∈ C0, and by definition of
the big union we know that x ∈ C0 implies x ∈

⋃
F. Therefore we conclude that x ∈ A

implies x ∈
⋃

F, which means that A ⊂
⋃
F.

29. If x ∈
⋃

F then x ∈ C0 for some C0 ∈ F. The hypotheses imply that C0 ⊂ A, and
therefore x ∈ A. Since C0 can be an arbitrary set from F, it follows that ∪F ⊂ A.

The remaining exercises in exam1w22review.pdf

1. (a) The relation R is reflexive, for if x ∈ N+ and a = b = 1 then xa = ab.
Furthermore, R is symmetric, for if xa = yb where a and b are odd then we also have
yb = xa (a and b are still odd!). Finally, the relation is transitive. If xa = yb where a and
b are odd and yc = zd where c and d are odd, then xac = ybc = ybd; since the product
of two odd integers is odd, it follows that ac and bd are both odd, and therefore xRz.
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Each equivalence relation contains a unique power of 2 because every positive integer has
a unique factorization 2pq, where p is a nonnegative integer and q is odd.

(b) We need to show that one of the three defining properties of an equivalence relation
is false for S. The quickest way is to show the relation is not reflexive. This is true because
the equation x = 2xm (where m ∈ N) is always false if x is a positive integer. In particular
it fails for x = 1.

2. The easiest way to construct examples with an empty intersection is to let A = B
be an arbitrary set. Then (A−B)× (B −A) = ∅ × ∅ = ∅.

To give an example with a nonempty intersection, let A = {1, 2} and B = {2, 3}.
Then A−B = {1} and B −A = {3}, so that (A−B)× (B −A) = {(1, 3)}.

3. Since R is an equivalence relation, we know that it is symmetric and therefore
x R y implies y R x. On the other hand, since R is a partial ordering, we know that it is
antisymmetric we know that x R y and y R x imply y = x. Finally, both conditions on R

imply it is reflexive, so that x R x for all x ∈ X.

4. We shall show that f−1 og satisfies the composition conditions to be an inverse
function. Here are the derivations:(

g−1 of
)

o
(
f−1 og

)
= g−1 of of−1 og =

g−1 o1X og = g−1 og = 1X

(
f−1 og

)
o
(
g−1 of

)
= f−1 og og−1 og =

g−1 o1X of = f−1 of = 1X

The function f−1 og is 1–1 and onto because it is a composite of two such functions
— namely, g−1 and f — and the composite of two 1–1 onto functions also has these
properties.

5. Follow the suggestion and split the problem into two cases; observe that f(x) = x|x|
is nonnegative if x ≥ 0 and nonpositive if x ≤ 0.

Suppose that x ≥ 0. Then f(x) = x2 and the inverse function is given by
√
x. On the

other hand, if x ≤ 0 then f(x) = −x2 and the inverse function is given by −
√
|x|. If we

define sgn (x) to be 1 if x > 0, sgn (0) = 0, and sgn (x) = −1 if x < 0, we can rewrite this
as a unified formula f−1(x) = sgn (x)

√
|x|.

6. Suppose that the ordering is a linear ordering. Then either a < b or b < a. In
either case one of a, b is not a maximal element, so we have a contradiction. The source of
the contradiction is our assumption that the ordering is a linear ordering, so this must be
false.
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7. We begin by verifying the hint: If h1 and h2 are in P, explain why their product also
lies inP. — Since the polynomials are nonzero, we can write them as h1(x) = amxm+k1(x)
and h2(x) = bnx

n +k2(x) where am, bn > 0 and k1 and k2 are polymonials of lower degree.
This implies that

h1(x)h2(x) = ambnx
m+n + LOWER DEGREE TERMS

and the terms of lower degree all have nonnegative coefficients since am, bn > 0 and the
coefficients of k1 and k2 are all nonnegative. Therefore the product belongs to P as claimed.

The binary relation defined in the problem is reflexive because f = f · 1 for all f .
Furtherore, it is transitive, for if h|g and g|f then g = hp and f = gq for some p, q ∈ P
and therefore f = (qp)h; by the preceding paragraph we know that the product qp belongs
to P. Finally, w se must verify that the relation is antisymmetric. Suppose that g|f and
f |g, with f = gp1 and g = fp2. Then f = fp1p2 if we can show that p1 = p2 = 1 then
f = g follows immediately. But f = fp1p2 implies that the degree of p1p2 must be zero,
so that the two polynomials in the product must be positive constants. Furthermore, the
leading term of f is equal to its product with the positive constants p1 and p2. The only
way this can happen is if p1 = p2 = 1, and this implies that f = g.
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