Mathematics 144, Winter 2022, Review for Examination 1

Solutions

Cunningham, Exercises 1.1

1. Let X be a large set containing A and B. Then the hypothesis $a \notin A-B$ translates to $a \notin A \cap(X-B)$, so that $a \in X-(A \cap(X-B))=(X-A) \cup B$. Since we also have $a \in A$, the only alternative is $a \in B .$.
2. Taking contrapositives, we conclude that $x \notin B$ implies $x \notin A$. Therefore $x \in C-B$ implies $x \in C-A$.■
3. We are given that $x \in A$ and $x \notin B$ implies $x \in C$. We want to prove that $y \in A$ and $y \notin C$ implies $y \in B$. Suppose this is false, so that we also have $y \notin B$. Then the first sentence implies that $y \in C$, contradicting our assumption that $y \notin C$. The source of this contradiction was our assumption that $y \notin B$, so this must be false and therefore we must have $y \in B$.■
4. If $x \in A$ then the hypotheses imply $x \in B$ and $x \in C$, so that $x \in B \cap C$, and therefore $x \in B \cap C$.■
5. If $x \in A$, then $A \subset B$ implies $x \in B$. Therefore $B \cap C=\emptyset$ implies $x \notin C$, so that $x \in B=C$ and hence $x \in B-C$. It follows that $A \subset B-C .$.
6. Let $S=A \cup B \cup C$. If $x \in A-(B-C)$ then by definition

$$
\begin{aligned}
x \in A \cap(S-(B-C))= & A \cap(S-(B \cap(S-C)))=A \cap((S-B) \cup C)= \\
& (A \cap(S-B)) \cup(A \cap C)
\end{aligned}
$$

and since we have $A-B=A \cap(S-B)$ and $A \cup C \subset C$ it follows that $x \in(A-B) \cup C . \square$
7. First of all, A is not empty because the empty set is contained in C for every choice of C. If $x \in A$ but $x \notin C$, then $A-B \subset C$ implies that $x \notin A \cap B$. Since $A=(A-B) \cap(A \cap B)$, this forces the conclusion that $x \in A \cap B$, and hence the latter is nonempty.■

12. This is one of the two DeMorgan Laws.■

13. This is the other DeMorgan Law.
14. \quad Suppose that $x \in(A-B) \cap(C-B)$. Then $x \in A-B$ and $x \in C-B$ imply $x \in A$ and $x \in C$, so that $x \in A \cap C$. Since we are also given that $x \notin B$, it follows that $x \in(A \cap C)-B$, so that $(A-B) \cap(C-B) \subset(A \cap C)-B$. Conversely, if $x \in(A \cap C)-B$, then $x \in A, x \in C$ and $x \notin B$ imply $x \in A-B$ and $x \in C-B$ implies $x \in(A-B) \cap(C-B)$, so that $(A \cap C)-B \subset(A-B) \cap(C-B) . ■$
15. These were done in the course notes.■
16. Suppose that $x \in A$. then $A \subset B$ and $B \cap C=\emptyset$ imply that $x \in B$ but $x \notin C$, so that $x \in B-C$.
17. We are given that $x \in A-B \subset C$ and $A \not \subset C$. The last condition implies that there is some $x \in A$ such that $x \notin C$. We claim that $x \in B$; if this were false, then we would have $x \in A-B$, and since $A-B \subset C$ it follows that $x \in C$. This contradicts our choice of x such that $x \notin C$. The source of the contradiction is our assumption that $x \notin B$, so we must have $x \in B$. Since we are given $x \in A$ it follows that $x \in A \cap B$ and hence $A \cap B$ is nonempty.
18. Suppose first that $A \subset B$. If $C \in \mathcal{P}(A)$ then $C \subset A$, and since $A \subset B$ we also have $C \subset B$, so that $C \in \mathcal{P}(B)$.

Conversely, suppose that $\mathcal{P}(A) \subset \mathcal{P}(B)$. If $x \in A$ then $\{x\} \in \mathcal{P}(A) \subset \mathcal{P}(B)$, and since $x \in \mathcal{P}(B)$ we must have $x \in B$ because B is the big union of the family $\mathcal{P}(B)$. .
21. If $E \in \mathcal{P}(A) \cup \mathcal{P}(B)$ then $E \subset A$ or $E \subset B$. In either case we have $E \subset A \cup B$, which means that $E \in \mathcal{P}(A \cup B)$. Therefore $\mathcal{P}(A) \cup \mathcal{P}(B) \subset \mathcal{P}(A \cup B)$.■
27. By definition $\bigcup \mathcal{F}$ is the union of all sets C such that $C \in \mathcal{F}$. We are given that $A \subset C_{0}$ for some $C_{0} \in \mathcal{F}$. If $x \in A$, then $A \subset C_{0}$ implies $x \in C_{0}$, and by definition of the big union we know that $x \in C_{0}$ implies $x \in \bigcup \mathcal{F}$. Therefore we conclude that $x \in A$ implies $x \in \bigcup \mathcal{F}$, which means that $A \subset \bigcup \mathcal{F} . ■$
29. If $x \in \bigcup \mathcal{F}$ then $x \in C_{0}$ for some $C_{0} \in \mathcal{F}$. The hypotheses imply that $C_{0} \subset A$, and therefore $x \in A$. Since C_{0} can be an arbitrary set from \mathcal{F}, it follows that $\cup \mathcal{F} \subset A$.■

The remaining exercises in exam1w22review.pdf

1. (a) The relation \mathcal{R} is reflexive, for if $x \in \mathbb{N}_{+}$and $a=b=1$ then $x a=a b$. Furthermore, \mathcal{R} is symmetric, for if $x a=y b$ where a and b are odd then we also have $y b=x a$ (a and b are still odd!). Finally, the relation is transitive. If $x a=y b$ where a and b are odd and $y c=z d$ where c and d are odd, then $x a c=y b c=y b d$; since the product of two odd integers is odd, it follows that $a c$ and $b d$ are both odd, and therefore $x \mathcal{R} z$.

Each equivalence relation contains a unique power of 2 because every positive integer has a unique factorization $2^{p} q$, where p is a nonnegative integer and q is odd..
(b) We need to show that one of the three defining properties of an equivalence relation is false for \mathcal{S}. The quickest way is to show the relation is not reflexive. This is true because the equation $x=2 x^{m}$ (where $m \in \mathbb{N}$) is always false if x is a positive integer. In particular it fails for $x=1$
2. The easiest way to construct examples with an empty intersection is to let $A=B$ be an arbitrary set. Then $(A-B) \times(B-A)=\emptyset \times \emptyset=\emptyset$.

To give an example with a nonempty intersection, let $A=\{1,2\}$ and $B=\{2,3\}$. Then $A-B=\{1\}$ and $B-A=\{3\}$, so that $(A-B) \times(B-A)=\{(1,3)\}$.
3. Since \mathcal{R} is an equivalence relation, we know that it is symmetric and therefore $x \mathcal{R} y$ implies $y \mathcal{R} x$. On the other hand, since \mathcal{R} is a partial ordering, we know that it is antisymmetric we know that $x \mathcal{R} y$ and $y \mathcal{R} x$ imply $y=x$. Finally, both conditions on \mathcal{R} imply it is reflexive, so that $x \mathcal{R} x$ for all $x \in X$
4. We shall show that $f^{-1} \circ g$ satisfies the composition conditions to be an inverse function. Here are the derivations:

$$
\begin{gathered}
\left(g^{-1 \circ} f\right) \circ\left(f^{-1 \circ} g\right)=g^{-1 \circ} f \circ f^{-1 \circ} g= \\
g^{-1 \circ} 1_{X} \circ g=g^{-1 \circ} g=1_{X} \\
\left(f^{-1 \circ} g\right) \circ\left(g^{-1 \circ} \circ\right)=f^{-1} \circ g^{\circ} g^{-1 \circ} g= \\
g^{-1 \circ} 1_{X} \circ f=f^{-1 \circ} \circ=1_{X}
\end{gathered}
$$

The function $f^{-1} \circ g$ is $1-1$ and onto because it is a composite of two such functions - namely, g^{-1} and f - and the composite of two $1-1$ onto functions also has these properties..
5. Follow the suggestion and split the problem into two cases; observe that $f(x)=x|x|$ is nonnegative if $x \geq 0$ and nonpositive if $x \leq 0$.

Suppose that $x \geq 0$. Then $f(x)=x^{2}$ and the inverse function is given by \sqrt{x}. On the other hand, if $x \leq 0$ then $f(x)=-x^{2}$ and the inverse function is given by $-\sqrt{|x|}$. If we define $\operatorname{sgn}(x)$ to be 1 if $x>0$, $\operatorname{sgn}(0)=0$, and $\operatorname{sgn}(x)=-1$ if $x<0$, we can rewrite this as a unified formula $f^{-1}(x)=\operatorname{sgn}(x) \sqrt{|x|}$..
6. Suppose that the ordering is a linear ordering. Then either $a<b$ or $b<a$. In either case one of a, b is not a maximal element, so we have a contradiction. The source of the contradiction is our assumption that the ordering is a linear ordering, so this must be false.
7. We begin by verifying the hint: If h_{1} and h_{2} are in \mathbf{P}, explain why their product also lies in \mathbf{P}. - Since the polynomials are nonzero, we can write them as $h_{1}(x)=a_{m} x^{m}+k_{1}(x)$ and $h_{2}(x)=b_{n} x^{n}+k_{2}(x)$ where $a_{m}, b_{n}>0$ and k_{1} and k_{2} are polymonials of lower degree. This implies that

$$
h_{1}(x) h_{2}(x)=a_{m} b_{n} x^{m+n}+\text { LOWER DEGREE TERMS }
$$

and the terms of lower degree all have nonnegative coefficients since $a_{m}, b_{n}>0$ and the coefficients of k_{1} and k_{2} are all nonnegative. Therefore the product belongs to \mathbf{P} as claimed.

The binary relation defined in the problem is reflexive because $f=f \cdot 1$ for all f. Furtherore, it is transitive, for if $h \mid g$ and $g \mid f$ then $g=h p$ and $f=g q$ for some $p, q \in \mathbf{P}$ and therefore $f=(q p) h$; by the preceding paragraph we know that the product $q p$ belongs to \mathbf{P}. Finally, w se must verify that the relation is antisymmetric. Suppose that $g \mid f$ and $f \mid g$, with $f=g p_{1}$ and $g=f p_{2}$. Then $f=f p_{1} p_{2}$ if we can show that $p_{1}=p_{2}=1$ then $f=g$ follows immediately. But $f=f p_{1} p_{2}$ implies that the degree of $p_{1} p_{2}$ must be zero, so that the two polynomials in the product must be positive constants. Furthermore, the leading term of f is equal to its product with the positive constants p_{1} and p_{2}. The only way this can happen is if $p_{1}=p_{2}=1$, and this implies that $f=g$.■

