Mathematics 144, Winter 2022, Review for Examination 2

The examination will consist of five problems, most if not all of which are closely related to the ones given below.

1. Give an example of an infinite set A and an infinite subset C such that $|A|=|C|=$ $|A-C|$.
2. Prove by induction that $2^{n}<n$! for $n \geq 4$.
3. Prove by induction that

$$
\prod_{k=1}^{n}\left(1-\frac{1}{k^{2}}\right)=\frac{n+1}{2 n}
$$

4. Let A be the set of all continuous real valued functions on the unit interval $[0,1]$, and define $f \mathcal{R} g$ if and only if the difference function $g(x)-f(x) \geq 0$ for all $x \in[0,1]$. Prove that \mathcal{R} is a partial ordering but not a linear ordering.
5. For each $k>0$ let P_{k} be the set of subsets $A \subset \mathbb{N}$ with exactly k elements. Prov that $\left|P_{k}\right|=\mathbb{N}$.
6. Let A and B be finite sets with p and q elements respectively. Explain why the number of binary relations \mathcal{R} from A to B (in other words $a b$ is true or false for each a, b) is equal to $2^{p q}$.
7. Prove that if $\alpha>0$ is a cardinal number in a sufficiently large set \mathcal{U} then there is a cardinal number β such that $\beta^{\beta}>\alpha^{\alpha}$.
8. Let S be a set and let $\mathcal{F} \subset \mathcal{P}(S)$ be a family of pairwise disjoint subsets such that each subset in the family has infinitely many elements. Prove that there is a subset $D \subset S$ such that for each $F \in \mathcal{F}$ the intersection $D \subset F$ has exactly two elements.
9. Recall that the disjoint union $A \sqcup B$ of two sets A and B is defined to be $A \times\{1\} \cup$ $B \times\{2\}$. Prove that there is a $1-1$ correspondence from $(A \sqcup B) \times C$ to $(A \times C) \sqcup(B \times C)$ where A, B, C are arbitrary sets.
