Mathematics 144, Winter 2022, Review for Examination 2

The examination will consist of five problems, most if not all of which are closely related to the ones given below.

1. Give an example of an infinite set A and an infinite subset C such that |A| = |C| = |A - C|.

- **2.** Prove by induction that $2^n < n!$ for $n \ge 4$.
- **3.** Prove by induction that

$$\prod_{k=1}^{n} \left(1 - \frac{1}{k^2}\right) = \frac{n+1}{2n} \, .$$

4. Let A be the set of all continuous real valued functions on the unit interval [0, 1], and define $f \mathcal{R} g$ if and only if the difference function $g(x) - f(x) \ge 0$ for all $x \in [0, 1]$. Prove that \mathcal{R} is a partial ordering but not a linear ordering.

5. For each k > 0 let P_k be the set of subsets $A \subset \mathbb{N}$ with exactly k elements. Prov that $|P_k| = \mathbb{N}$.

6. Let A and B be finite sets with p and q elements respectively. Explain why the number of binary relations \mathcal{R} from A to B (in other words a b is true or false for each a, b) is equal to 2^{pq} .

7. Prove that if $\alpha > 0$ is a cardinal number in a sufficiently large set \mathcal{U} then there is a cardinal number β such that $\beta^{\beta} > \alpha^{\alpha}$.

8. Let S be a set and let $\mathcal{F} \subset \mathcal{P}(S)$ be a family of pairwise disjoint subsets such that each subset in the family has infinitely many elements. Prove that there is a subset $D \subset S$ such that for each $F \in \mathcal{F}$ the intersection $D \subset F$ has exactly two elements.

9. Recall that the disjoint union $A \sqcup B$ of two sets A and B is defined to be $A \times \{1\} \cup B \times \{2\}$. Prove that there is a 1–1 correspondence from $(A \sqcup B) \times C$ to $(A \times C) \sqcup (B \times C)$ where A, B, C are arbitrary sets.