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L02 
 

Some basic topics in logic 
 

Sections 1.2 – 1.4 of Cunningham discuss some fundamental concepts of mathe-
matical logic from a formal viewpoint.  These notes are focused on the concepts which 
are needed most frequently for mathematical proofs in this and other courses,  and the 
formalities are translated into everyday language. 
 
The concept of a mathematical statement is fundamental to the discussion which 
follows.   We shall not (and to some extent we cannot) describe this precisely, but the 
examples should illustrate the concept, and the underlying idea is that “we know one 
when we see or hear one.”  A mathematical statement may be true or false; an 

example of a true statement is “for every real number  x  we have  x 0  =  0,”  and  an 

example of a false statement is “for every real number  x  we have  x + x  =  0.” 

 
LOGICALLY EQUIVALENT STATEMENTS:  In mathematical discussions it is 
important to know about equivalent ways to state the same fact.  For example, Problem 
2 on page 9 of Cunningham discusses the following equivalence: 
 

First DeMorgan Law.  Let P and Q be mathematical statements.  Then the compound 
statement “(Either P is true or Q is true) is false” is logically equivalent to “Both P and 
Q are false.” 
 

A formal verification is discussed in Cunningham.   Here is an example of how it is used 

in set theory:  x ∉∉∉∉ A  ∪∪∪∪  B  is logically equivalent to ( x ∉∉∉∉ A   and x ∉∉∉∉ B ). 
 
There is also a Second DeMorgan Law.  Let P and Q be mathematical statements.  
Then the compound statement “(Both P and Q are true) is false” is logically equivalent 
to “Either P is false or Q is false.” 
 

Here is the corresponding example from set theory:  x ∉∉∉∉ A  ∩∩∩∩  B  is logically equivalent 

to ( x ∉∉∉∉ A   or x ∉∉∉∉ B ). 
 

Page 11 of Cunnningham has a fairly long list of other logical equivalences, some of 
which can be translated into everyday language as indicated: 
 

First Distributive Law.  Let P, Q and R be mathematical statements.  Then the 
compound statement “(Either P is true or Q is true) and R is true” is logically equivalent 
to “Either (both P and R are true) or (both Q and R are true).”  
 

Here is a corresponding example involving integers:  “(The integer p is evenly divisible 

by 3 or 5) and (p is positive)” is logically equivalent to “Either (the integer p is positive 

and evenly divisible by 3) or (the integer p is positive and evenly divisible by 5).”   
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Second Distributive Law.  Let P, Q and R be mathematical statements.  Then the 
compound statement “Either (both P and Q are true) or (R is true)” is logically 
equivalent to “Both (either P or R is true) and (Q or R is true) are true.”  
 

Here is a corresponding example involving integers:  “(The integer p is evenly divisible 

by 5 and 3) or (p is a perfect square)” is logically equivalent to “Both (the integer p is 

evenly divisible by 5 or p is a perfect square) and (the integer p is evenly divisible by 3 

or p is a perfect square) are true.”   
 
 

Double Negation Law.  Let P be a mathematical statement.  Then the compound 
statement “(P is false) is false” is logically equivalent to “P is true.”  
 

Contrapositive Law.  Let P and Q be mathematical statements.  Then the compound 
statement “If P is true, then Q is true” is logically equivalent to “If Q is false, then P is 
false.” 
 

Here is a corresponding example involving integers:  “If the integer p is a perfect 

square, then the integer p is nonnegative” is logically equivalent to “If the integer p is 

negative, then the integer p is not a perfect square.”  
 
STATEMENTS WITH VARIABLES:  In ordinary language a statement can be broken 
down into words or phrases.  Similarly, mathematical statements consist of various 
pieces.  It is often helpful to think of some pieces as fixed and others as variable.  For 

example, consider the statement “Person X has blue eyes.”  The truth of this statement 

clearly depends on the identity of “Person X.”  In other words, this is a statement which 

depends upon the variable X,  so for each choice of  X  we obtain a statement  P(X )  
whose validity depends upon the variable  “Person X.”    One mathematical example of 

this sort is “The number x satisfies  x + 5  =  11.”  In this case “The number x” is the 

variable, so we know that P(x) is true when x  =  6  and false otherwise.   This is an 
example of the sorts of statements studied in the predicate (logical) calculus. 
 
STATEMENTS WITH QUANTIFIERS:   Frequently we want to know whether a 

statement P(x) is true for some or all meaningful values of x.   This is done by adding 

the phrase “for all [meaningful choices of] x …” or  “for some [meaningful choice of] x 

…” (in the second case, this is equivalent to “there exists some [meaningful choice of] 

x  such that …”).   The shorthand symbols ∀∀∀∀ x  and ∃∃∃∃ x for these phrases (respectively) 
are introduced and studied on page 14 of Cunningham.   
 
Since proofs by contradiction (or reduction ad absurdum) play an important role in 
mathematics, it is important to understand the precise meaning of a quantified 
statement.  Here are the two basic rules: 
 

 The negation of “∃∃∃∃ x, P(x) is true” is “∀∀∀∀    x, P(x) is false.” 
 

 The negation of “∀∀∀∀ x, P(x) is true” is “∃∃∃∃    x, P(x) is false.” 
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Frequently mathematical statements have several variable pieces, so one should also 
understand statements in which two variables are quantified.  If the variables have the 

same quantifiers, then it does not matter which appears first; in symbolic terms,  ∃∃∃∃ x    ∃∃∃∃ y 

is equivalent to ∃∃∃∃ y    ∃∃∃∃ x, and ∀∀∀∀ x ∀∀∀∀ y is equivalent to ∀∀∀∀ y ∀∀∀∀ x.  However, if different 
quantifiers arise then the validity of a statement may depend upon the ordering of the 
quantifiers.  Here is an example involving real numbers:   
 

Let P(x, y) be the statement, “x and y are real numbers such that x > y.”  Then “∀∀∀∀ y    ∃∃∃∃ x, 

P(x, y) is true” is true because if we are given  y  and set  x  =  y + 1 then P(x, y) is 

true.  On the other hand, “∃∃∃∃ x ∀∀∀∀ y, P(x, y) is true” is false because there is no real 

number x which is strictly greater than all real numbers. 
 
Page 19 of Cunningham contains another set of identities called Quantifier Distributive 
Laws.  These deal with situations where P can be split into some combination of smaller 
statements but they are more routine than the preceding material and thus are omitted 
here.   The following two sections (1.4 and 1.5) discuss the formal language for set 
theory in terms of the logical symbolism introduced up to this point.  The material can be 
skipped without a significant loss of continuity. 
 
  


