SOLVED PROBLEMS FOR WEEK 01

1. Give nonmathematical counterexamples to show that the following statements about set theoretic membership are not necessarily true for arbitrary sets A, B, C.

- (i) $A \in A$.
- (*ii*) If $A \in B$, then $B \in A$.

(*iii*) If $A \in B$ and $B \in C$, then $A \in C$.

SOLUTIONS.

(i) We shall use the example of a deck of cards. Let A be the deck. Then the elements of A are single cards, and A is not a single card, so $A \notin A$.

(*ii*) Suppose that A is a loaf of bread, so that the elements of A are slices of bread, and let B be a shipment containing loaves of bread, including A so that $A \in B$. Then $B \notin A$ because B is not a slice of bread.

(*iii*) Let A be a slice of the loaf of bread B, and let B be one of the loaves in shipment C. Then $A \notin C$ because it is only a slice of bread and not an entire loaf.

2. Give a nonmathematical example of sets A, B, C such that $A \subset B$ and $B \in C$ but $A \notin C$.

SOLUTION.

Once again let B be a loaf of bread in shipment C, and let A be some but not all of the slices of the loaf B. Only entire loaves are elements of C, so $A \notin C$.

3. In the set theoretic approach to classical geometry, space is a set and the points are the elements of that set. Each line or plane will correspond to a subset of space. How might one interpret the concept of a line lying on a plane?

SOLUTION.

The appropriate interpretation of a line lying on a plane is that the subset given by the line is contained in the subset given by the plane.

4. Suppose that \mathbf{P} , \mathbf{Q} and \mathbf{R} are logical statements such that "Either \mathbf{P} or \mathbf{R} is true" is logically equivalent to "Either \mathbf{Q} or \mathbf{R} is true." Give a mathematical counterexample to show that this statement does not necessarily imply that \mathbf{P} is logically equivalent to \mathbf{Q} . Also, give a counterexample to show that the following analogous condition: "Both \mathbf{P} and \mathbf{R} are true" is logically equivalent to "Both \mathbf{Q} and \mathbf{R} are true." Give a mathematical counterexample to show that this statement does not necessarily imply that \mathbf{P} is logically equivalent to equivalent to "Both \mathbf{Q} and \mathbf{R} are true." Give a mathematical counterexample to show that this statement does not necessarily imply that \mathbf{P} is logically equivalent to \mathbf{Q} .

1

SOLUTION.

Suppose that \mathbf{P} is the statement that x is the real number zero, \mathbf{Q} is the statement that x is the real number one, and \mathbf{R} is the statement that x is a real number. Then both " \mathbf{P} or \mathbf{R} " and " \mathbf{Q} or \mathbf{R} " are logically equivalent to \mathbf{R} , but certainly \mathbf{P} is not logically equivalent to \mathbf{Q} .

Similarly, suppose \mathbf{P} is the statement that the integer x is a perfect square, \mathbf{Q} is the statement that the integer x is a perfect cube, and \mathbf{R} is the statement that the intege x is a sixth power. Then both " \mathbf{P} and \mathbf{R} " and " \mathbf{Q} and \mathbf{R} " are logically equivalent to \mathbf{R} , but \mathbf{P} and \mathbf{Q} are not logically equivalent because there are integers that are perfect squares but not perfect cubes and vice versa.