Math 144 Winter 2022

EXERCISES FOR WEEK 02

0. Work the following problems from Cunningham:

Exercises 2.1 (pp. 36–37): 1–4, 16, 20, 24–26, 29–30 Exercises 2.2 (p. 40): 2, 4, 11

- **1.** Let *A* and *B* be sets. Prove that the following are equivalent:
 - (i) $A \cap B = A$.
 - (*ii*) $A \subset B$.
 - (*iii*) $A \cup B = B$.

2. Let A, B, and C be subsets of a given set S. Prove that one has the mixed associativity (also known as **modularity**) property

$$(A \cap B) \cup C = A \cap (B \cup C)$$

if and only if $C \subset A$; in particular, the criterion has nothing to do with B. [Hint: This proof uses the distributive laws.]

3. Suppose that A, B, C and D are sets such that $A \subset C$ and $B \subset D$. Prove that $(A \cup B) \subset (C \cup D)$ and $(A \cap B) \subset (C \cap D)$.

4. Prove the following identities for Cartesian products:

 $\begin{array}{rcl} (i) & (A \times B) \cap (C \times D) &=& (A \cap C) \times (B \cap D). \\ (ii) & (A \times B) \cup (C \times D) & \subset & (A \cup C) \times (B \cup D). \\ (iii) & (X \times Y) - (A \times B) &=& (X \times (Y - B)) \cup ((X - A) \times Y). \end{array}$

Also give an example in (ii) where the left hand side is not equal to the right hand side.

[*Hint:* It might help to draw rectangles corresponding to the various Cartesian products.]

1