EXERCISES FOR WEEK 02

0. Work the following problems from Cunningham:

Exercises 2.1 (pp. 36-37): 1-4, 16, 20, 24-26, 29-30
Exercises 2.2 (p. 40): 2, 4, 11

1. Let A and B be sets. Prove that the following are equivalent:
(i) $A \cap B=A$.
(ii) $A \subset B$.
(iii) $A \cup B=B$.
2. Let A, B, and C be subsets of a given set S. Prove that one has the mixed associativity (also known as modularity) property

$$
(A \cap B) \cup C=A \cap(B \cup C)
$$

if and only if $C \subset A$; in particular, the criterion has nothing to do with B. [Hint: This proof uses the distributive laws.]
3. Suppose that A, B, C and D are sets such that $A \subset C$ and $B \subset D$. Prove that $(A \cup B) \subset(C \cup D)$ and $(A \cap B) \subset(C \cap D)$.
4. Prove the following identities for Cartesian products:
(i) $(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)$.
(ii) $(A \times B) \cup(C \times D) \subset(A \cup C) \times(B \cup D)$.
(iii) $(X \times Y)-(A \times B)=(X \times(Y-B)) \cup((X-A) \times Y)$.

Also give an example in (ii) where the left hand side is not equal to the right hand side.
[Hint: It might help to draw rectangles corresponding to the various Cartesian products.]

