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L03

Assumptions and identities in set theory 

We have already noted that some restrictions are needed on the admissible collections 

of objects in set theory which we call sets; for example, the universal collection UUUU  of all 

sets is not admissible because we run into difficulties when we consider whether it is an 
element of itself.   Section 2.1 of Cunningham may be viewed informally as a summary 
of conditions under which a construction on a set will always yield another set.    

Roughly speaking, an inadmissible collection is one which is “too large” to be a set, and 
this is implicit in the axioms for set theory in Section 1.6 of Cunningham.   Here is an 
equivalent restatement of these axioms: 

At least one set exists.   If this is not true, then nothing else matters. 

Subsets.   A subcollection of a set is also a set. 

Empty set.   There is a set which has no elements. 

Specification principle.   If  A is a set and  P(x)  is a mathematical statement with 

variables that is meaningful for every  x ∈∈∈∈ A, then 

{ x ∈∈∈∈ A |  P(x) is true} 

is also a set. 

Pairing property.   If  u and v  are sets the there is a set { u, v } whose only members 

are u  and  v.  The case  u  =  v  is included, and in this case the set is denoted by { u } 

(or equivalently by { v }). 

Big union property.   If  FFFF  is a family (= set) of sets, then there is a set  SSSS(FFFF) such 

that  x ∈∈∈∈ SSSS(FFFF)  if and only if  x  belongs to some  A ∈∈∈∈  FFFF.  Generally we use notation 

like either  ∪∪∪∪ { A | A ∈∈∈∈  FFFF } or   ∪∪∪∪A ∈∈∈∈  FFFF    A to specify SSSS(FFFF).

As noted in Cunningham, the big union property implies the existence of sets such as 

{1, 2, 3}.   For this example we merely need to take  FFFF  to be the family given by {1, 2} 

and {3}.   Continuing in this manner, to obtain  {1, 2, 3, 4}  we take  FFFF  to be the family 

given by {1, 2, 3} and {4}.   Clearly this should be repeatable ad infinitum, but we 
shall not try to do so here. 

The usual two set union  A  ∪∪∪∪  B  is a special case where FFFF  is given by  { A} and { B}.

More accurately, all 
but the last axiom 
in Section 2.1 of 
Cunningham.
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There is a similar concept of big intersection for a nonempty family  FFFF  of sets: 

∩∩∩∩ { x ∈∈∈∈  SSSS(FFFF) |  x ∈∈∈∈ A  for all  A ∈∈∈∈  FFFF}

In this case we must assume that  FFFF  is nonempty in order to avoid some logical 
anomalies described near the bottom of page 33 (and contued on the next page) in 
Cunningham.  A big intersection will automatically be a set because it is a subcollection 

of each  A ∈∈∈∈  FFFF.   We shall also denote this set by  ∩∩∩∩ A ∈∈∈∈  FFFF    A  or  ∩∩∩∩ { A | A ∈∈∈∈  FFFF }. 

As in the discussion of unions, the usual two set intersection  A  ∩∩∩∩  B  is a special case 

where FFFF  is given by  { A} and { B} if  A  ≠≠≠≠  B  and by just { A} if  A  ====  B. 

Theorem 2.1.9 describes the relationship of big unions and big intersections if one has 
two families FFFF  and GGGG  such that one is a subfamily of the other.  Read that proof and try 
to understand it well enough so you could explain the idea correctly (maybe informally) 
to another student.   

Algebraic manipulations in set theory 

Section 2.2 of Cunningham considers standard algebraic identities involving unions, 
intersections and complements.  Many reflect the logical equivalences from the previous 
lecture.   

Union and intersection identities.  Let  A,  B  and  C  be subsets of some fixed 

universal set  U.U.U.U.  Then the union and intersection defined as above satisfy the following 

Boolean algebra identities: 

(Idempotent Law for unions.)  A  ∪∪∪∪  A   ====   A. 

(Idempotent Law for intersections.)  A  ∩∩∩∩  A   ====   A. 

(Commutative Law for unions.)  A  ∪∪∪∪  B   ====   B  ∪∪∪∪  A. 

(Commutative Law for intersections.)  A  ∩∩∩∩  B   ====   B  ∩∩∩∩  A.  

(Associative Law for unions.)  A  ∪∪∪∪  (B  ∪∪∪∪  C )   ====   (A  ∪∪∪∪  B )  ∪∪∪∪  C.

(Associative Law for intersections.)  A  ∩∩∩∩  (B  ∩∩∩∩  C )   ====   (A  ∩∩∩∩  B )  ∩∩∩∩  C. 

(Distributive Law 1.)  A  ∩∩∩∩  (B  ∪∪∪∪  C )   ====   (A  ∩∩∩∩  B )  ∪∪∪∪  (A  ∩∩∩∩  C ). 

(Distributive Law 2.)  A  ∪∪∪∪  (B  ∩∩∩∩  C )   ====   (A  ∪∪∪∪  B )  ∩∩∩∩  (A  ∪∪∪∪  C ). 

(Zero Law.)  A  ∪∪∪∪  Ø   ====   A. 

(Unit Law.)  A  ∩∩∩∩  UUUU  ====   A. 

Also see the  whiteboard files for this lecture.

Also see the whiteboard files for 
comments on how to verify these 
identities.
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The second group of set – theoretic relations also involves complementation. 

Frequently the complement of a set  A  is denoted by something like  A ′′′′,  A *,  or A
c
,

particularly if we are discussing relative complements with respect to some fixed semi – 

universal set  U.U.U.U. 

Complementation identities.  Let A and B be subsets of some fixed universal set  U.U.U.U. 

Then the union, intersection and relative complement satisfy the following identities: 

(Double negative Law.)   (A′′′′ )′′′′   ====   A. 

(Complementation Law 1.)   A  ∪∪∪∪  A′′′′    ====   UUUU. 

(Complementation Law 2.)   A  ∩∩∩∩  A′′′′  ====   Ø. 

(De Morgan’s Law 1.)   (A  ∪∪∪∪  B )′′′′   ====   A′′′′  ∩∩∩∩   B ′′′′. 

(De Morgan’s Law 2.)   (A  ∩∩∩∩  B )′′′′   ====   A′′′′  ∪∪∪∪   B ′′′′. 

Verifying these identities.     Some of these identities can be checked very simply. 
For example, the idempotent laws merely reflect the logical tautologies   

x ∈∈∈∈ A  ⇔⇔⇔⇔  x ∈∈∈∈ A  or  x ∈∈∈∈ A,     x ∈∈∈∈ A  ⇔⇔⇔⇔  x ∈∈∈∈ A  and  x ∈∈∈∈ A 

while the commutative laws follow because both  A  ∪∪∪∪  B   and   B  ∪∪∪∪  A  are the big 

union for the family { A,  B}  and also both  A  ∩∩∩∩  B   and   B  ∩∩∩∩  A  are the big 

intersection for the family { A,  B}.  Similarly, the associative laws follow because both  

A  ∪∪∪∪  (B  ∪∪∪∪  C )  and  (A  ∪∪∪∪  B )  ∪∪∪∪  C  are the big union for the family { A,  B,  C}  and also 

both  A  ∩∩∩∩  (B  ∩∩∩∩  C )  and   (A  ∩∩∩∩  B )  ∩∩∩∩  C   are the big intersection for the same family  

{ A,  B,  C }.   The zero law follows because there is no  x ∈∈∈∈ Ø, and the unit law follows 

because  A is a subset of UUUU, which implies the intersection identity (since  x ∈∈∈∈ A  

automatically implies x ∈∈∈∈ UUUU).   To complete the first list of identities, we note that the 

two distributive laws are direct consequences of the definitions for union and 
intersection together with the distributive laws for logic in Lecture 02.   

Turning to the second list of identities, the double negative law merely reflects the 
corresponding law for logical statements in Lecture 02,  while the complementation laws 

reflect the facts that the statement  x ∈∈∈∈ A cannot be simultaneously true and false (the 

intersection identity) and the facts that A is contained in  UUUU, so that  A′′′′  ====   UUUU  –  A,

plus either x ∈∈∈∈ A or its negation must be true.  To complete the first list of identities, we 

note that the two DeMorgan laws are direct consequences of the definitions for union 
and intersection together with the DeMorgan laws for logic in Lecture 02.   

Sometimes one  also writes  A   (bar on top).
__
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Note.  Section 2.2 of Cunningham proves much more general versions of the 
distributive and DeMorgan laws.   Specifically,  Theorem 2.2.2 proves DeMorgan laws 

for A – B where  A is a set and  B  is either a big union or a big intersection, and 

Theorem 2.2.4 proves distributive laws for A  ∪∪∪∪  B and A  ∩∩∩∩  B, where (as before)  A is a 

set and  B  is either a big union or a big intersection. 

One axiom needed for the proof of this has not yet 
been introduced.  More on this in Lecture 04.




