SOLUTIONS FOR WEEK 02 EXERCISES

Cunningham, Exercises 2.1

1. This was done in the solved examples.■
2. This is done in previous examples.■
3. If $x \in A-C$ then $x \in A$ but $x \notin C$. Since $B \subset C$, we know that $x \notin C$ implies $x \notin B$. But this means that $x \in A-B$, and therefore $A-C \subset A-B$ by the definition of subsets.-
4. This was also done in the solved examples.■
5. Suppose that $x \in(A \cup B)-(A \cap B)$. Then $x \in A$ or $x \in B$ but $x \notin A \cap B$. If $x \in A$ and $x \notin A \cap B$ then $x \in A-(A \cap B)$. However, we also have $x \in A-(A \cap B)=A-B$ because (1) $A \cap B$ is a subset of B, so $x \in A$ and $x \notin B$ implies $x \notin A \cap B$, (2) $x \in A$ and $x \notin A \cap B$ implies $x \notin B$ because $x \in B$ would imply $x \in A \cap B$. Therefore $x \in A-B$. If $x \in B$ we can interchange the roles of A and B in the preceding argument to conclude that $x \in B-A$. Combining these, we have $(A \cup B)-(A \cap B) \subset(A-B) \cup(B-A)$.

Conversely, suppose that $x \in(A-B) \cup(B-A)$. Since $A-B \subset A$ and $B-A \subset B$, it follows that $x \in A \cup B$. Therefore the only remaining issue is to prove that $x \notin A \cap B$. Observe first that $(A-B) \cap(B-A)=\emptyset$, for $x \in A-B$ implies $x \notin B-A$ and $x \in B-A$ implies $x \notin A-B$. If $x \in A-B$ then $A-B=A-(A \cap B)$ implies $x \notin A \cap B$, and likewise if $x \in B-A$ then $B-A=B-(A \cap B)$ implies $x \notin A \cap B$. Therefore $x \notin A \cap B$ in all cases, so that $(A-B) \cup(B-A) \subset(A \cup B)-(A \cap B) .$.
20. Suppose first that $A \subset B$. If $C \in \mathcal{P}(A)$ then $C \subset A$, and since $A \subset B$ we also have $C \subset B$, so that $C \in \mathcal{P}(B)$.

Conversely, suppose that $\mathcal{P}(A) \subset \mathcal{P}(B)$. If $x \in A$ then $\{x\} \in \mathcal{P}(A) \subset \mathcal{P}(B)$, and since $x \in \mathcal{P}(B)$ we must have $x \in B$ because B is the big union of the family $\mathcal{P}(B) . \square$
24. This is true because $\emptyset \in \mathcal{P}(A)$ and hence $\emptyset \notin \mathcal{P}(B)-\mathcal{P}(A)$.■
25. We know that $\cup \mathcal{F}$ is the union of all sets A such that $A \in \mathcal{F}$. Since C is a set of the latter type it follows that $x \in C$ implies $x \in \cup \mathcal{F} . ■$
26. We know that $\cap \mathcal{F}$ is the intersection of all sets A such that $A \in \mathcal{F}$. Since C is a set of the latter type it follows that $x \in \cap \mathcal{F}$ implies $x \in C . ■$
29. If $x \in \cup \mathcal{F}$ then $x \in C_{0}$ for some $C_{0} \in \mathcal{F}$. The hypotheses imply that $C_{0} \subset A$, and therefore $x \in A$. Since C_{0} can be an arbitrary set from \mathcal{F}, it follows that $\cup \mathcal{F} \subset A$.■
30. Since $A \in \mathcal{P}(A)$ we have $A \subset \cup \mathcal{P}(A)$. On the other hand, $C \in \mathcal{P}(A)$ implies $C \subset A$, and therefore $\cup \mathcal{P}(A) \subset A$. Combining these, we see that $\cup \mathcal{P}(A)=A$.■

Cunningham, Exercises 2.2

2. We first claim that the collection \mathcal{F}^{\prime} of all sets having the form $A \cup C$ for some $C \in \mathcal{F}$ is also a set, which means that the right hand side of the equation in the conclusion will also be a set. Since this new family is contained in $\mathcal{P}((\cup(\mathcal{F}) \cup A))$ we know that \mathcal{F}^{\prime} is indeed a (subcollection of a) set.

Now suppose that $x \in A \cup C$ where $C \in \mathcal{F}$. Then we automatically have $x \in C^{\prime}$ for some $C^{\prime} \in \cup \mathcal{F}^{\prime}$ and therefore $x \in \cup \mathcal{F}^{\prime}$. Conversely, if $x \in \cup \mathcal{F}^{\prime}$ then $x \in A \cup C$ for some $C \in F$. Now either $x \in A$ or else $x \in C$. In the second case $x \in \cup \mathcal{F}$, and therefore $x \in A \cup(\cup \mathcal{F})$.

Conversely, if $x \in A \cup(\cup \mathcal{F})$ then either $x \in A$ or else $x \in C$ for some $C \in \mathcal{F}$. In either case $x \in A \cup C$ for some $C \in \mathcal{F}$ and therefore $x \in C^{\prime}$ for some $C^{\prime} \in \mathcal{F}^{\prime}$. Combining the results of this and the preceding paragraph, we see that $\cup \mathcal{F}^{\prime}$ and $A \cup(\cup \mathcal{F})$ are equal.■
4. For this exercise we need to know that the collection \mathcal{F}^{*} of all sets having the form $A \cap C$ for some $C \in \mathcal{F}$ is also a set, which means that the right hand side of the equation in the conclusion will also be a set; the collection \mathcal{F}^{*} will be nonempty because \mathcal{F} is nonempty. This follows by taking the argument in the first paragraph of the preceding solution and replacing $A \cup C$ with $A \cap C$ everywhere.

The solution now proceeds as in the preceding exercise: Suppose that $x \in A \cap C$ where $C \in \mathcal{F}$. Then we automatically have $x \in C^{\prime}$ for some $C^{\prime} \in \cup \mathcal{F}^{*}$ and therefore $x \in \cup \mathcal{F}^{*}$. Conversely, if $x \in \cup \mathcal{F}^{*}$ then $x \in A \cap C$ for some $C \in F$. Now both $x \in A$ and $x \in C$. By the second of these, $x \in \cup \mathcal{F}$, and therefore $x \in A \cap(\cup \mathcal{F})$.

Conversely, if $x \in A \cap(\cup \mathcal{F})$ then both $x \in A$ and $x \in C$ for some $C \in \mathcal{F}$. Therefore case $x \in A \cap C$ for some $C \in \mathcal{F}$ and hence $x \in C^{\prime}$ for some $C^{\prime} \in \mathcal{F}^{*}$. Combining the results of this and the preceding paragraph, we see that $x \in \cup \mathcal{F}^{*}$ and combining this with the preceding paragraph, we conclude that $A \cap(\cup \mathcal{F})$ are equal.■
11. First of all, $\mathcal{F} \cup \mathcal{G}$ is a family of sets because it is the union of the families \mathcal{F} and \mathcal{G}.

Suppose that $x \in \cup(\mathcal{F} \cup \mathcal{G})$. Then $x \in C$ where either $C \in \mathcal{F}$ or $C \in \mathcal{G}$. In the first case $x \in \cup \mathcal{F}$ and in the second case $x \in \cup \mathcal{G}$; in either of these cases we have $x \in(\cup \mathcal{F}) \cup(\cup \mathcal{G})$.

Conversely, suppose that $x \in(\cup \mathcal{F}) \cup(\cup \mathcal{G})$. In the first case $x \in C$ for some $C \in \mathcal{F}$ and in the second case $x \in C$ for some $C \in \mathcal{G}$; in either of these cases we have $x \in C$ for some $C \in \mathcal{F} \cup \mathcal{G}$. By the definition of big unions, this means that $x \in \cup(\mathcal{F} \cup \mathcal{G}) .$.

1. $\quad(i) \Rightarrow($ ii $)$ Since $A \cap B \subset B$, we must have $A=A \cap B \subset B$. (ii) $\Rightarrow(i)$ If $A \subset B$ and $x \in A$, then we also have $x \in B$ and hence $x \in A \cap B$.
(iii) \Rightarrow (ii) Since $A \subset A \cup B$, we must have $A \subset A \cap B=B$. (ii) \Rightarrow (iii) If $A \subset B$ then $x \in A$ implies $x \in B$ so that $x \in A \cup B$ implies $x \in B$ in all cases.■
2. Suppose first that $C \subset A$. Then by distributivity $(A \cap B) \cup C=(A \cup C) \cap(B \cup C)$, which is equal to $A \cap(B \cup C)$ by the inclusion hypothesis. Conversely, suppose the modular identity holds for A, B, C. Then we have

$$
C \subset(A \cap B) \cup C=A \cap(B \cup C) \subset A
$$

as required.■
3. Suppose that $x \in A \cup B$. If $x \in A$ then $c \in C$, and if $x \in B$ then $x \in D$. In either case $x \in C \cup D$, so that $A \cup B \subset C \cup D . ■$

Now suppose that $x \in A \cap B$. Since $x \in A$ we have $c \in C$, and since $x \in B$ we have $x \in D$. Therefore $x \in C \cap D$, so that $A \cap B \subset C \cap D . ■$
4. (i) Suppose that (x, y) lies in $(A \times B) \cap(C \times D)$. Then we have $x \in A$ and $y \in B$, and we also have $x \in C$ and $y \in D$. The first and third of these imply $x \in A \cap C$, while the second and fourth imply $y \in B \cap D$. Therefore $(x, y) \in(A \cap C) \times(B \cap D)$ so that

$$
(A \times B) \cap(C \times D) \subset(A \cap C) \times(B \cap D)
$$

Suppose now that (x, y) lies in the set on the right hand side of the displayed equation. Then $x \in A \cap C$ and $y \in B \cap D$. Since $x \in A$ and $y \in B$ we have $(x, y) \in A \times B$, and likewise since $x \in C$ and $y \in D$ we have $(x, y) \in C \times D$, so that

$$
(A \times B) \cap(C \times D) \supset(A \cap C) \times(B \cap D)
$$

Therefore the two sets under consideration are equal.■
(ii) Suppose that (x, y) lies in $(A \times B) \cup(C \times D)$. Then either we have $x \in A$ and $y \in B$, or else we have $x \in C$ and $y \in D$. The first and third of these imply $x \in A \cup C$, while the second and fourth imply $y \in B \cup D$. Therefore (x, y) is a member of $(A \cup C) \times(B \cup D)$ so that

$$
(A \times B) \cup(C \times D) \subset(A \cup C) \times(B \cup D)
$$

Supplementary note: To see that the sets are not necessarily equal, consider what happens if $A \cap C=B \cap D=\emptyset$ but all of the four sets A, B, C, D are nonempty. Try drawing a picture in the plane to visualize this.■

(iii) Suppose that (x, y) lies in $(X \times Y)-(A \times B)$. Then $x \in X$ and $y \in Y$ but $(x, y) \notin A \times B$. The latter means that the statement

$$
x \in A \text { and } y \in B
$$

is false, which is logically equivalent to the statement

$$
\text { either } x \notin A \text { or } y \notin B
$$

If $x \notin A$, then it follows that $(x, y) \in((X-A) \times Y)$, while if $y \notin B$ then it follows that $(x, y) \in(X \times(Y-B))$. Therefore we have

$$
(X \times Y)-(A \times B) \subset(X \times(Y-B)) \cup((X-A) \times Y)
$$

Suppose now that (x, y) lies in the set on the right hand side of the containment relation on the displayed line. Then we have $(x, y) \in X \times Y$ and also

$$
\text { either } x \notin A \text { or } y \notin B
$$

The latter is logically equivalent to

$$
x \in A \text { and } y \in B
$$

and this in turn means that $(x, y) \notin A \times B$ and hence proves the reverse inclusion of sets. -

