
Math 144
Fall 2022

SOLUTIONS FOR WEEK 02 EXERCISES

Cunningham, Exercises 2.1

1. This was done in the solved examples.

2. This is done in previous examples.

3. If x ∈ A − C then x ∈ A but x 6∈ C. Since B ⊂ C, we know that x 6∈ C implies
x 6∈ B. But this means that x ∈ A−B, and therefore A−C ⊂ A−B by the definition of
subsets.

4. This was also done in the solved examples.

16. Suppose that x ∈ (A∪B)− (A∩B). Then x ∈ A or x ∈ B but x 6∈ A∩B. If x ∈ A
and x 6∈ A ∩ B then x ∈ A − (A ∩ B). However, we also have x ∈ A − (A ∩ B) = A − B
because (1) A ∩B is a subset of B, so x ∈ A and x 6∈ B implies x 6∈ A ∩B, (2) x ∈ A and
x 6∈ A ∩ B implies x 6∈ B because x ∈ B would imply x ∈ A ∩ B. Therefore x ∈ A − B.
If x ∈ B we can interchange the roles of A and B in the preceding argument to conclude
that x ∈ B −A. Combining these, we have (A ∪B)− (A ∩B) ⊂ (A−B) ∪ (B −A).

Conversely, suppose that x ∈ (A− B) ∪ (B − A). Since A− B ⊂ A and B − A ⊂ B,
it follows that x ∈ A ∪B. Therefore the only remaining issue is to prove that x 6∈ A ∩B.
Observe first that (A−B)∩ (B−A) = ∅, for x ∈ A−B implies x 6∈ B−A and x ∈ B−A
implies x 6∈ A−B. If x ∈ A−B then A−B = A− (A∩B) implies x 6∈ A∩B, and likewise
if x ∈ B − A then B − A = B − (A ∩ B) implies x 6∈ A ∩ B. Therefore x 6∈ A ∩ B in all
cases, so that (A−B) ∪ (B −A) ⊂ (A ∪B)− (A ∩B).

20. Suppose first that A ⊂ B. If C ∈ P(A) then C ⊂ A, and since A ⊂ B we also have
C ⊂ B, so that C ∈ P(B).

Conversely, suppose that P(A) ⊂ P(B). If x ∈ A then {x} ∈ P(A) ⊂ P(B), and since
x ∈ P(B) we must have x ∈ B because B is the big union of the family P(B).

24. This is true because ∅ ∈ P(A) and hence ∅ 6∈ P(B)− P(A).

25. We know that ∪F is the union of all sets A such that A ∈ F. Since C is a set of
the latter type it follows that x ∈ C implies x ∈ ∪F.

26. We know that ∩F is the intersection of all sets A such that A ∈ F. Since C is a
set of the latter type it follows that x ∈ ∩F implies x ∈ C.

29. If x ∈ ∪F then x ∈ C0 for some C0 ∈ F. The hypotheses imply that C0 ⊂ A, and
therefore x ∈ A. Since C0 can be an arbitrary set from F, it follows that ∪F ⊂ A.
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30. Since A ∈ P(A) we have A ⊂ ∪P(A). On the other hand, C ∈ P(A) implies C ⊂ A,
and therefore ∪P(A) ⊂ A. Combining these, we see that ∪P(A) = A.

Cunningham, Exercises 2.2

2. We first claim that the collection F′ of all sets having the form A ∪ C for some
C ∈ F is also a set, which means that the right hand side of the equation in the conclusion
will also be a set. Since this new family is contained in P ((∪(F) ∪A)) we know that F′ is
indeed a (subcollection of a) set.

Now suppose that x ∈ A ∪ C where C ∈ F. Then we automatically have x ∈ C ′

for some C ′ ∈ ∪F′ and therefore x ∈ ∪F′. Conversely, if x ∈ ∪F′ then x ∈ A ∪ C for
some C ∈ F . Now either x ∈ A or else x ∈ C. In the second case x ∈ ∪F, and therefore
x ∈ A ∪ (∪F).

Conversely, if x ∈ A∪ (∪F) then either x ∈ A or else x ∈ C for some C ∈ F. In either
case x ∈ A ∪ C for some C ∈ F and therefore x ∈ C ′ for some C ′ ∈ F′. Combining the
results of this and the preceding paragraph, we see that ∪F′ and A ∪ (∪F) are equal.

4. For this exercise we need to know that the collection F∗ of all sets having the form
A∩C for some C ∈ F is also a set, which means that the right hand side of the equation in
the conclusion will also be a set; the collection F∗ will be nonempty because F is nonempty.
This follows by taking the argument in the first paragraph of the preceding solution and
replacing A ∪ C with A ∩ C everywhere.

The solution now proceeds as in the preceding exercise: Suppose that x ∈ A ∩ C
where C ∈ F. Then we automatically have x ∈ C ′ for some C ′ ∈ ∪F∗ and therefore
x ∈ ∪F∗. Conversely, if x ∈ ∪F∗ then x ∈ A ∩ C for some C ∈ F . Now both x ∈ A and
x ∈ C. By the second of these, x ∈ ∪F, and therefore x ∈ A ∩ (∪F).

Conversely, if x ∈ A ∩ (∪F) then both x ∈ A and x ∈ C for some C ∈ F. Therefore
case x ∈ A∩C for some C ∈ F and hence x ∈ C ′ for some C ′ ∈ F∗. Combining the results
of this and the preceding paragraph, we see that x ∈ ∪F∗ and combining this with the
preceding paragraph, we conclude that A ∩ (∪F) are equal.

11. First of all, F∪G is a family of sets because it is the union of the families F and G.

Suppose that x ∈ ∪(F∪G). Then x ∈ C where either C ∈ F or C ∈ G. In the first case
x ∈ ∪F and in the second case x ∈ ∪G; in either of these cases we have x ∈ (∪F) ∪ (∪G).

Conversely, suppose that x ∈ (∪F)∪ (∪G). In the first case x ∈ C for some C ∈ F and
in the second case x ∈ C for some C ∈ G; in either of these cases we have x ∈ C for some
C ∈ F ∪ G. By the definition of big unions, this means that x ∈ ∪(F ∪ G).

2



The remaining exercises in exercises02.pdf

1. (i)⇒ (ii) Since A∩B ⊂ B, we must have A = A∩B ⊂ B. (ii)⇒ (i) If A ⊂ B and
x ∈ A, then we also have x ∈ B and hence x ∈ A ∩B.

(iii) ⇒ (ii) Since A ⊂ A ∪ B, we must have A ⊂ A ∩ B = B. (ii) ⇒ (iii) If A ⊂ B
then x ∈ A implies x ∈ B so that x ∈ A ∪B implies x ∈ B in all cases.

2. Suppose first that C ⊂ A. Then by distributivity (A∩B)∪C = (A∪C)∩ (B ∪C),
which is equal to A∩(B∪C) by the inclusion hypothesis. Conversely, suppose the modular
identity holds for A,B,C. Then we have

C ⊂ (A ∩B) ∪ C = A ∩ (B ∪ C) ⊂ A

as required.

3. Suppose that x ∈ A ∪ B. If x ∈ A then c ∈ C, and if x ∈ B then x ∈ D. In either
case x ∈ C ∪D, so that A ∪B ⊂ C ∪D.

Now suppose that x ∈ A ∩ B. Since x ∈ A we have c ∈ C, and since x ∈ B we have
x ∈ D. Therefore x ∈ C ∩D, so that A ∩B ⊂ C ∩D.

4. (i) Suppose that (x, y) lies in (A×B) ∩ (C ×D). Then we have x ∈ A and y ∈ B,
and we also have x ∈ C and y ∈ D. The first and third of these imply x ∈ A ∩ C, while
the second and fourth imply y ∈ B ∩D. Therefore (x, y) ∈ (A ∩ C)× (B ∩D) so that

(A×B) ∩ (C ×D) ⊂ (A ∩ C)× (B ∩D) .

Suppose now that (x, y) lies in the set on the right hand side of the displayed equation.
Then x ∈ A ∩ C and y ∈ B ∩ D. Since x ∈ A and y ∈ B we have (x, y) ∈ A × B, and
likewise since x ∈ C and y ∈ D we have (x, y) ∈ C ×D, so that

(A×B) ∩ (C ×D) ⊃ (A ∩ C)× (B ∩D) .

Therefore the two sets under consideration are equal.
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(ii) Suppose that (x, y) lies in (A×B) ∪ (C ×D). Then either we have x ∈ A and
y ∈ B, or else we have x ∈ C and y ∈ D. The first and third of these imply x ∈ A∪C, while
the second and fourth imply y ∈ B∪D. Therefore (x, y) is a member of (A ∪ C)×(B ∪D)
so that

(A×B) ∪ (C ×D) ⊂ (A ∪ C)× (B ∪D) .

Supplementary note: To see that the sets are not necessarily equal, consider what
happens if A ∩ C = B ∩ D = ∅ but all of the four sets A, B, C, D are nonempty. Try
drawing a picture in the plane to visualize this.

(iii) Suppose that (x, y) lies in (X × Y ) − (A×B). Then x ∈ X and y ∈ Y but
(x, y) 6∈ A×B. The latter means that the statement

x ∈ A and y ∈ B

is false, which is logically equivalent to the statement

either x 6∈ A or y 6∈ B .

If x 6∈ A, then it follows that (x, y) ∈
(

(X − A) × Y
)
, while if y 6∈ B then it follows

that (x, y) ∈
(
X × (Y −B)

)
. Therefore we have(

X × Y
)
−
(
A×B

)
⊂

(
X × (Y −B)

)
∪
(

(X −A)× Y
)
.

Suppose now that (x, y) lies in the set on the right hand side of the containment relation
on the displayed line. Then we have (x, y) ∈ X × Y and also

either x 6∈ A or y 6∈ B .

The latter is logically equivalent to

x ∈ A and y ∈ B

and this in turn means that (x, y) 6∈ A×B and hence proves the reverse inclusion of sets.
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