Math 144
Fall 2022

SOLUTIONS FOR WEEK 02 EXERCISES

Cunningham, Exercises 2.1

1. This was done in the solved examples.n
2.  This is done in previous examples.m

3. Ifxe A—C thenx € Abut x ¢ C. Since B C C, we know that = ¢ C implies
x ¢ B. But this means that x € A — B, and therefore A — C C A — B by the definition of
subsets.m

4.  This was also done in the solved examples.n

16. Suppose that x € (AUB)—(ANB). Thenz € Aorx € Bbutz ¢ ANB. Ifz € A
and x ¢ AN B then z € A — (AN B). However, we also have z € A— (ANB)=A—-B
because (1) AN B is a subset of B, so x € A and z ¢ B implies x ¢ AN B, (2) x € A and
x & AN B implies © ¢ B because x € B would imply x € AN B. Therefore x € A — B.
If z € B we can interchange the roles of A and B in the preceding argument to conclude

that x € B — A. Combining these, we have (AUB) — (ANB) C (A—B)U (B —A).

Conversely, suppose that © € (A — B)U (B — A). Since A— B C Aand B— A C B,
it follows that x € AU B. Therefore the only remaining issue is to prove that + € AN B.
Observe first that (A—B)N(B—A) =0, forx € A— B impliesz ¢ B—Aandx € B— A
impliesz ¢ A—B. If t € A— B then A— B = A— (AN B) implies x ¢ AN B, and likewise
if t € B—Athen B— A= B— (AN B) implies x ¢ AN B. Therefore x ¢ AN B in all
cases, so that (A—B)U(B—A)C(AUB)—(ANB)x

20. Suppose first that A C B. If C € P(A) then C' C A, and since A C B we also have
C C B, so that C' € P(B).

Conversely, suppose that P(A) C P(B). If x € A then {z} € P(A) C P(B), and since
x € P(B) we must have x € B because B is the big union of the family P(B).=

24. This is true because () € P(A) and hence ) & P(B) — P(A).m

25. We know that UF is the union of all sets A such that A € F. Since C is a set of
the latter type it follows that x € C implies z € UF =

26. We know that NF is the intersection of all sets A such that A € F. Since C is a
set of the latter type it follows that x € NF implies x € C'm

29. If x € UF then x € Cy for some Cy € F. The hypotheses imply that Cy C A, and
therefore € A. Since Cy can be an arbitrary set from &, it follows that UF C A.m
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30. Since A € P(A) we have A C UP(A). On the other hand, C' € P(A) implies C' C A,
and therefore UP(A) C A. Combining these, we see that UP(A) = A.m

Cunningham, Exercises 2.2

2. We first claim that the collection F of all sets having the form A U C for some
C € T is also a set, which means that the right hand side of the equation in the conclusion
will also be a set. Since this new family is contained in P ((U(F) U A)) we know that F' is
indeed a (subcollection of a) set.

Now suppose that x € AU C where C € F. Then we automatically have x € C’
for some C’ € UF" and therefore x € UF'. Conversely, if z € UF then x € AU C for
some C' € F. Now either x € A or else x € C. In the second case x € UF, and therefore
x € AU (UT).

Conversely, if z € AU (UF) then either x € A or else x € C for some C' € JF. In either
case © € AU C for some C € F and therefore x € C’ for some C’ € F'. Combining the
results of this and the preceding paragraph, we see that UF" and A U (UF) are equal.m

4. For this exercise we need to know that the collection F* of all sets having the form
ANC for some C € JF is also a set, which means that the right hand side of the equation in
the conclusion will also be a set; the collection 3* will be nonempty because J is nonempty.
This follows by taking the argument in the first paragraph of the preceding solution and
replacing A U C with AN C everywhere.

The solution now proceeds as in the preceding exercise: = Suppose that x € ANC
where C € F. Then we automatically have x € C’ for some C' € UF* and therefore
x € UF*. Conversely, if x € UF* then z € AN C for some C' € F. Now both z € A and
x € C. By the second of these, x € UF, and therefore x € AN (UF).

Conversely, if x € AN (UF) then both x € A and = € C for some C € F. Therefore
case x € ANC for some C' € F and hence z € C’ for some C’' € F*. Combining the results
of this and the preceding paragraph, we see that x € UF* and combining this with the
preceding paragraph, we conclude that A N (UF) are equal.m

11. First of all, FU G is a family of sets because it is the union of the families ¥ and G.

Suppose that x € U(FUG). Then x € C where either C' € F or C € G. In the first case
x € UF and in the second case € USG; in either of these cases we have z € (UF) U (UG).

Conversely, suppose that x € (UF) U (USG). In the first case € C for some C' € F and
in the second case x € C for some C € G; in either of these cases we have x € C for some
C € FUG. By the definition of big unions, this means that z € U(FU G).u



The remaining exercises in exercises02.pdf
1. (i) = (it) Since ANB C B, we must have A= ANB C B. (it) = (i) If AC B and
x € A, then we also have x € B and hence z € AN B.

(#4i) = (ii) Since A C AU B, we must have A C AN B = B. (ii) = (iii) f AC B
then z € A implies x € B so that x € AU B implies z € B in all cases.n

2. Suppose first that C' C A. Then by distributivity (AN B)UC = (AUC)N(BUC(C),
which is equal to AN(BUC) by the inclusion hypothesis. Conversely, suppose the modular
identity holds for A, B,C. Then we have

C Cc(AnB)uC = An(BUC) Cc A

as required.m

3. Suppose that t € AUB. If z € A then c € C, and if x € B then z € D. In either
casex e CUD,sothat AUBC CUD.m

Now suppose that € AN B. Since x € A we have ¢ € ', and since x € B we have
x € D. Therefore x € CND,sothat ANBCCNDm

4. (7) Suppose that (z,y) lies in (A x B) N (C x D). Then we have z € A and y € B,
and we also have x € C and y € D. The first and third of these imply x € AN C, while
the second and fourth imply y € BN D. Therefore (z,y) € (ANC) x (BN D) so that

(AxB)N(CxD) Cc (AnC)x (BnND) .
Suppose now that (x,y) lies in the set on the right hand side of the displayed equation.
Then x € ANC and y € BN D. Since x € A and y € B we have (z,y) € A x B, and
likewise since z € C' and y € D we have (z,y) € C' x D, so that

(AxB)N(CxD) > (AnC)x (BND) .

Therefore the two sets under consideration are equal.m



(i4) Suppose that (z,y) lies in (A x B) U (C x D). Then either we have z € A and
y € B, or else we have x € C and y € D. The first and third of these imply x € AUC, while
the second and fourth imply y € BUD. Therefore (z,y) is a member of (AU C) x (B U D)
so that
(AxB)U(CxD) Cc (AuC)x (BUD) .

Supplementary note: To see that the sets are not necessarily equal, consider what
happens if ANC = BN D = () but all of the four sets A, B, C, D are nonempty. Try
drawing a picture in the plane to visualize this.m
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(731) Suppose that (z,y) lies in (X xY) — (Ax B). Then x € X and y € Y but
(x,y) € A x B. The latter means that the statement

reAandy € B
is false, which is logically equivalent to the statement
eitherxr  Aory¢ B .

If z ¢ A, then it follows that (z,y) € ((X — A) x Y, while if y ¢ B then it follows
that (z,y) € (X x (Y — B) ). Therefore we have

(XxY)=(AxB) ¢ (Xx(Y-B))U((X-4)xY).

Suppose now that (z,y) lies in the set on the right hand side of the containment relation
on the displayed line. Then we have (z,y) € X x Y and also
eitherc ¢ Aory ¢ B .
The latter is logically equivalent to
reAandye€B

and this in turn means that (z,y) € A x B and hence proves the reverse inclusion of sets.



