SOLVED PROBLEMS FOR WEEK 02

1. Let A and B be sets. Prove the following statements:
(i) If X is a set such that $A \subset X$ and $B \subset X$, then $A \cup B \subset X$.
(ii) If Y is a set such that $Y \subset A$ and $Y \subset B$, then $Y \subset A \cup B$.

SOLUTION.
(i) Suppose that $x \in A \cup B$, so either $x \in A$ or $x \in B$. In the first case $A \subset X$ implies $x \in X$, and in the second case $x \in B$ implies $x \in X$, so $x \in X$ in all cases. By definition, this means $A \cup B \subset X$.■
(ii) Suppose that $y \in Y$. Since $Y \subset A$ this implies $y \in A$, and since $Y \subset B$ this implies $y \in B$. Therefore $y \in A \cap B$, and hence by definition it follows that $Y \subset A \cap B . ■$
2. Let A and B be nonempty sets. Prove that $A \times B=B \times A$ if and only if $A=B$.

SOLUTION.

If $A=B$ then we trivially have $A \times B=A \times A=B \times A$. Conversely, suppose we have $B \times A=A \times B$. Let $b \in B$. Then for each $x \in A$ we have $(b, x) \in B \times A=A \times B$, which means that $b \in A$. Thus we have shown that B is contained in A. Similarly, let $a \in A$. Then for each $y \in B$ we have $(y, a) \in B \times A=A \times B$, which means that $a \in B$. Thus we have shown that A is contained in B. Combining these, we conclude that $A=B$.
3. Let A, B and C be sets. Prove that $(A \times B) \cap(A \times C)=A \times(B \cap C)$.

SOLUTION.

Suppose that $(x, y) \in(A \times B) \cap(A \times C)$. Then $(x, y) \in A \times B$ implies $x \in A$ and $y \in B$, and $(x, y) \in A \times C$ implies $x \in A$ and $y \in C$. Since y belongs to both B and C, we have $y \in B \cap C$ and hence $(x, y) \in A \times(B \cap C)$.

Conversely, if $(x, y) \in A \times(B \cap C)$ then $x \in A$ and $y \in B \cap C$. The second of these implies that $(x, y) \in A \times B$ and $(x, y) \in A \times C$, and therefore $(x, y) \in(A \times B) \cap(A \times C) . ■$
4. Let X be a set and let $A, B \subset X$. The symmetric difference $A \oplus B$ is defined by the formula

$$
A \oplus B=(A-B) \cup(B-A)
$$

so that $A \oplus B$ consists of all objects in A or B but not both. Prove that \oplus satisfies the associative identity $(A \oplus B) \oplus C=A \oplus(B \oplus C)$ for all $A, B, C \subset X$.

SOLUTION.
Denote the complement $X-Y$ of $Y \subset X$ by Y^{*}, and write $P \cap Q$ simply as $P Q$ to simplify the algebraic manipulations. Then the symmetric difference can be rewritten in the form $\left(A B^{*}\right) \cup\left(B A^{*}\right)$.
It then follows that

$$
\begin{gathered}
(A \oplus B) \oplus C=\left(A B^{*} \cup B A^{*}\right) C^{*} \cup C\left(A B^{*} \cup B A^{*}\right)^{*}= \\
A B^{*} C^{*} \cup B A^{*} C^{*} \cup C\left(\left(A^{*} \cup B\right)\left(B^{*} \cup A\right)\right)=A B^{*} C^{*} \cup B A^{*} C^{*} \cup C\left(A^{*} B^{*} \cup A B\right)= \\
A B^{*} C^{*} \cup A^{*} B C^{*} \cup A^{*} B^{*} C \cup A B C
\end{gathered}
$$

Similarly, we have

$$
\begin{gathered}
A \oplus(B \oplus C)=A\left(B C^{*} \cup C B^{*}\right)^{*} \cup\left(B C^{*} \cup C B^{*}\right) A^{*}= \\
A\left(\left(B^{*} \cup C\right)\left(C^{*} \cup B\right)\right) \cup B C^{*} A^{*} \cup C B^{*} A^{*}=A\left(B^{*} C^{*} \cup B C\right) \cup B C^{*} A^{*} \cup C B^{*} A^{*}= \\
A B^{*} C^{*} \cup A^{*} B C^{*} \cup A^{*} B^{*} C \cup A B C
\end{gathered}
$$

This proves the associativity of \oplus because the two right hand sides are equal..
Here is a Venn diagram in which the symmetric difference is displayed.

