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L06 
 

Binary relations and equivalence 
 

Cartesian products provide a solid mathematical framework for stating that two objects 
are somehow related.   
 

Definition.  If A and B are two sets, then a binary relation from A to B  is a subset  RRRR 

of A ×××× B.  We shall often say that x is RRRR – related to  y    or that     x is in the  RRRR – relation 

to   y    if ( x, y )  ∈∈∈∈  RRRR.  Frequently we shall also write  x RRRR y  to indicate this relation 

holds for x and y in that order. 
 

If A  =  B then a binary relation from A to A is simply called a binary relation on A. 
  

Some of these abstractly defined binary relations are not particularly interesting.  In 

particular, both the empty set and all of  A ×××× B  satisfy the condition to be a binary 

relation, but neither carries any new information distinguishing one ordered pair (a, b) 
from another (a ′′′′, b ′′′′).   Another less trivial, but still relatively unenlightening, example of 

a binary operation on an arbitrary set A is given by the diagonal relation  ∆∆∆∆ A consisting 

of all ordered pairs  ( x, y )  such that  x  =  y.   If  RRRR  =   ∆∆∆∆ A  then  x RRRR y  simply means 

that  x  and  y  are equal.   

 
We clearly need more substantial examples to justify the definition of a binary relation.   
  

Example 1.  Let A be the integers, rational numbers or real numbers, and take the 

binary relation on A consisting of all ( x, y ) such that  x  ≤≤≤≤   y. 
 

Example 2.    Let  A  be the integers, and take the binary relation on A consisting of all 

ordered pairs ( x, y ) such that  x – y  is even.  In this case x and y are related if and only 
if either both are even or both are odd.  
 

Example 3.    Let  A be the positive integers, and take the binary relation on  A 

consisting of all pairs ( x, y )  such that the quotient  y/x  is a positive integer (in other 

words, x evenly divides y with no remainder).   
 

Example 4.    In this example A will correspond to the squares on a chessboard, so that 

we can identify  A  with  
 

{ 1, 2, 3, 4, 5, 6, 7, 8 }  ××××  { 1, 2, 3, 4, 5, 6, 7, 8 } 
 

and ( x, y ) will be related to ( x ′′′′, y ′′′′ ) if and only if one of the two quantities  | x – x ′′′′ |  and  

| y – y ′′′′ | is equal to 1 and the other is equal to 2.   In nonmathematical terms this relation 
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corresponds to the condition in chess that a knight positioned at square ( x, y ) is able to 

reach square ( x ′′′′, y ′′′′ ) in one move, assuming that the latter is not occupied by a piece 
of the same color. 
 

Example 5.  In this example let A be the set of all polynomials with real coefficients, 

and stipulate that a polynomial  f (t ) is related to  g (t )  if there is a third polynomial  P (x ) 

such that  g (t )  =  P ( f (t )) . 
 

Example 6.  This is given by the rock – paper – scissors game.  Let A be the set { rock, 

paper, scissors }, and stipulate that object  x  is related to object  y  if object  x  wins 

over y under the usual rules of the game (scissors wins over paper, while paper wins 
over rock, and rock wins over scissors).  
 

Example 7.   In this example  A  and  B  will be distinct sets.   Take  A  to be the plane 

(either in the classical Euclidean sense or the coordinate sense),  let  B  =  A ×××× A,  and 

consider the relation  z  RRRR ( x, y )  if and only if x  and  y are distinct and z lies on the 

(unique) line determined by  x  and  y.  
 

Example 8.   Given a set  A,  take the binary relation on the set   PPPP (A)  of all its subsets 

defined by  B RRRR  C  if and only if  B  is a subset of  C. 
 

Here is a chart for the last example if  A  consists of two elements.  We may index the 

elements of PPPP (A)  by two digit numbers  q r  where each of q  and  r  is either  0  or 1 

(hence 10 corresponds the subset which contains q  but not r,  11  corresponds the 

subset which contains everything,  and  00  corresponds to the empty set).   In the chart 

the first coordinate of ( B, C ) is given by the row and the second by the column;  a 

square is marked by a plus sign if  B  is contained in  C  and by a circle otherwise.  
Setting up a similar chart for a set with three elements is a strongly recommended 
exercise. 
 

 

C\B 00 01 10 11 

00 + O O O 

01 + + O O 

10 + O + O 

11 + + + + 
 

 
Equivalence relations 

 
Frequently in mathematics it is important to understand whether two objects have some 
common properties even if they might not be identical.  This is made precise in the 
concept of an equivalence relation.   
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Definitions.  Let RRRR be a binary relation on a set  A. 
 

RRRR is reflexive if  a RRRR a  for all  a  ∈∈∈∈  A.  
   

RRRR is symmetric if a RRRR b  implies b RRRR a  for all a, b  ∈∈∈∈  A.   
   

RRRR is transitive if a RRRR  b  and  b RRRR c  imply a RRRR  c for all a, b, c  ∈∈∈∈  A.   
 

Observe that the equality relation a  =  b  satisfies all three of these conditions.  More 
generally, we say that  RRRR  is an equivalence relation  if it satisfies all of the three 

properties defined above.   As noted in Cunningham, an equivalence relation a RRRR  b is 

frequently denoted by  a ~ b.   
 

An arbitrary binary relation on a set might or might not sarisfy some or all of these 
properties.  In fact, for each subset of this list there are binary relations which satisfy the  
properties in that subset but do not satisfy any of the others (in other words, the 
conditions are logically independent or each other).  Here is a chart indicating whether 
a given property is valid for the examples given above: 

 

property\example 1 2 3 4 5 6 8 

reflexive + + + O + O + 

symmetric O + O + O O O 

transitive + + + O + O + 

 

In particular, only the second example is an equivalence relation.   Here is another 
example with all the details worked out: 
 

Example 9.    If  A  is the set of real numbers, consider the binary relation  a RRRR b  if and 

only if b – a  is an integer.  Then  RRRR is an equivalence relation.    
 

VERIFICATION.    The reflexive law is valid because  a – a  =  0 and  0 is an integer.  

Furthermore, the symmetric law is also valid, for if  b – a  is the integer  n  then  a – b  

is the integer  – n.  Finally, the transitive law is also valid, for if b – a  is the integer  n  

and  c – b  is the integer  m, then  c – a  =  (c – b ) + (b – a)  is the integer  m + n.  
 
Equivalence classes and partitions.  If two objects in the set A are related by an 
equivalence relation, it generally means that they have certain properties in common.   

Given  a ∈∈∈∈ A and an equivalence relation  EEEE  on A, it is natural to consider all members 

of A which have a given common property.  The remainder of this lecture is devoted to 

considering such subsets of A. 
 

Definition.  If  A is a set,  a ∈∈∈∈ A, and  EEEE  is an equivalence relation on A, then the EEEE – 
equivalence class of a, written [a] EEEE  or simply [a]  if  EEEE  is clear from the context, is the 
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set of all  x ∈∈∈∈ A such that x is EEEE – related to a.  —  If  C is an equivalence class for EEEE 

and  x ∈∈∈∈ C, then one frequently says that x is a representative for the equivalence 

class  C (or something that is grammatically equivalent).  
 

Since equivalence classes for EEEE are subsets of A, we have the following elementary 
observation.  
 

Proposition.    If A is a set and EEEE is an equivalence relation on A, then the collection of 

all EEEE – equivalence classes is a set.  
 

PROOF.   By construction the collection of all equivalence classes is a subcollection of 

the set PPPP (A).  
 

The set of all equivalence classes is often denoted by symbolism such as  A/EEEE, and it 

is often verbalized as “A modulo  EEEE” or (more briefly) “A mod  EEEE.”   

 
Equivalence classes for previous examples.    In Example 2, the equivalence class 

of an integer a is the set of all even integers if a is even and the set of all odd integers if  

a is odd.  For the equality relation(s), the equivalence class of a is simply the set { a }.   

In the example involving real numbers(Example 9), the equivalence class of a number 
is the set of all real numbers such that the decimal expansions to the right of the 
decimal point are the same.   
 

The equivalence classes of an equivalence relation have the following fundamentally 
important property: 
 

Theorem.   Let A be a set, suppose that x and y belong to A, and let EEEE be an 

equivalence relation on A.  Then either the equivalence classes [x] EEEE  and  [ y] EEEE  are 

disjoint or else they are equal. 
 

PROOF.  Suppose that the equivalence classes in question are not disjoint, and let z 

belong to both of them.  Then we have x EEEE z and y EEEE z.  By symmetry, the second of 

these implies z EEEE y, and one can combine the latter with x EEEE z and transitivity to 

conclude that x EEEE y. 
 

Suppose now that w ∈ [ y] EEEE so that  y EEEE w.  By transitivity and the final conclusion of 

the previous paragraph it follows that y EEEE w, so that  w ∈ [ x] EEEE  is also true.  Therefore 

we have shown that  [ y] EEEE  ⊂⊂⊂⊂  [x] EEEE.    If we reverse the roles of  x  and  y  in this 

argument and note that x EEEE y implies y EEEE x, we can also conclude that  [x] EEEE  ⊂⊂⊂⊂  [ y] EEEE.  
Combining this with the preceding sentence, we have [ y] EEEE  =  [x] EEEE. 
 

Corollary (Partition Property).  The equivalence classes of an equivalence relation on 

A form a family of pairwise disjoint subsets whose union is all of A.   
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A converse to the preceding corollary also plays an important role in the study of 
equivalence relations: 
 

Proposition.   Let A be a set, and let C be a family of subsets of A such that (i) the 

subsets in C are pairwise disjoint, (ii) the union of the subsets in C is equal to A.  Then 

there is an equivalence relation EEEE on A whose equivalence classes are the sets in the 

family C. 
 

The family C is said to define a partition of the set A. 
 

PROOF.  We define a binary relation EEEE on A by stipulating that x EEEE y  if and only if 

there is some B ∈ C such that x ∈∈∈∈ B  and y ∈∈∈∈ B.  
 

Our first objective is to prove that EEEE is an equivalence relation.  To see that x EEEE x for all 

x, let x be arbitrary and use the hypothesis that the union of the subsets in C is A to find 

some set  B  such that x ∈∈∈∈ B.  We then have  x ∈∈∈∈ B  and  x ∈∈∈∈ B, and therefore it 

follows that x EEEE x. 
 

Suppose now that x EEEE y, so that there is some  B ∈∈∈∈ C such that x ∈∈∈∈ B  and  y ∈∈∈∈ B.  

We then also have x ∈∈∈∈ B  and  x ∈∈∈∈ B, and therefore it follows that  y EEEE x.   
 

Finally, suppose that  x EEEE y and y EEEE z.   Then by the definition of  EEEE there are subsets  

B, D ∈∈∈∈ C such that x ∈∈∈∈ B  and  y ∈∈∈∈ B  and also y ∈∈∈∈ D  and  z ∈∈∈∈ D.    It follows that B 

and D have y in common, and since the family C of subsets is pairwise disjoint, it 

follows that the subsets B and D must be equal.  But this means that x ∈∈∈∈ B,  y ∈∈∈∈ B 

and z ∈∈∈∈ B.   Therefore we have  x EEEE z, and this completes the proof that EEEE is an 

equivalence relation.     
 

What is the equivalence class of an element x ∈∈∈∈ A?  Choose B such that x ∈∈∈∈ B; since 

B is the unique subset from the family C that contains x,  it follows that x EEEE y if and 

only if y also belongs to B.  Therefore B is the equivalence class of x.  Since  x  was 
arbitrary, it follows that the equivalence classes of EEEE are just the subsets in the original 

family C. 
 

Example 10.   Among other things, the following example illustrates how different 

equivalence classes can have different numbers of elements.  Let A be the real 

numbers, and consider the relation x RRRR y if and only if  x
3
 – 27x  =  y

3
 – 27y.  It is fairly 

straightforward to verify that this defines an equivalence relation on the real numbers, 

and the equivalence classes consist of all values of x such that x
3
 – 27x is equal to a 

specific real number a.   
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One way to visualize the equivalence classes of RRRR is to take the graph of  x
3
 – 27x  and 

look at its intersection with a fixed horizontal line of the form y  =  a.  If we sketch of the 

graph for  y  =  x
3
 – 27x  as in the picture below, it is apparent that for some choices of 

a one obtains equivalence classes with one point, for exactly two choices of a the 

equivalence classes consist of two points, and for still other choices of a the 
equivalence classes consist of three points.  
 
 

 
 

The cases with two points occur when the tangent line to the graph is horizontal, which 

happens when | x |  =  3,  and hence when | a |  =  54.   Thus equivalence classes 

have exactly one element if | a |  <  54, exactly two elements if  | a |  =  54,  and 

exactly three elements if  | a |  >  54. 
 

 
 
 
 
  


