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L07 
 

Functions – I  
 

How much does it cost to mail this package? 
  

That depends upon how much the package weighs. 

 

Given two sets A and B, one particularly important class of relations between A and B 

for which the B variable depends in some specific way on the A variable.  This is the 
basis for the mathematical concept of a function.   In the situation of the displayed text, 
the relationship is  
 

cost   =   (rate per unit) ×××× (weight in units, rounded up to the next integer). 
 

Archaeological discoveries indicate that some version of the function concept was 
already recognized in prehistoric times, and there are many ways of describing 
functions formally.  Here are three standard methods for doing so: 
 

1. The use of tables to list the values of functions in terms of their dependent 
variables. 

 

2. The use of formulas to express the values of functions in terms of their 
dependent variables. 

 

3. The use of graphs to visualize the behavior of functions. 
 

Each of these methods is quite old.    There are tables and formulas in the writings of 
ancient civilizations from approximately 4000 years ago; however, the formulas are 
expressed in words rather than symbols.  The idea of using coordinates to display 
functions dates back to the 14th century (at least).   Both tables and graphs can be 
described in terms of ordered pairs, where the first coordinate represents the 
independent variable and the second represents the dependent variable, and this is the 
basis for the mathematical definition of a function.    
 

Definition.   A function is an ordered pair  f  =  ( (A, B) , ΓΓΓΓ ) where A and B are sets 

and ΓΓΓΓ is a subset of A ×××× B with the following property:  
 

[ ! ! ]  For each a  ∈∈∈∈  A  there is a unique element  b  ∈∈∈∈  B such that  (a, b)  ∈∈∈∈  ΓΓΓΓ. 
 

The sets A and B are respectively called the domain and codomain  of  f  ,  and ΓΓΓΓ is 

called the graph of  f.   Frequently we write f : A →→→→ B to denote a function with domain 

A and codomain  B, and as usual we write  
 

b  =  f (a)  if and only if the ordered pair  (a, b)  lies in the graph of  f . 
 

By [ ! ! ], for every a ∈∈∈∈ A there is a unique b ∈∈∈∈ B such that b  =  f (a). 
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Frequently a function is simply defined to be the subset ΓΓΓΓ described above, but in our 

definition the source set  A (formally, this is the domain of the function) and the target 
set B (formally, this is the codomain of the function) are included explicitly as part of 
the structure.  The domain is generally redundant.  However, in some mathematical 

contexts if  f : A →→→→ B  is a function and B is a subset of C, then from our perspective it 

is absolutely necessary to distinguish between the function from A to B with graph ΓΓΓΓ 

and the analogous function from A to  C whose graph is also equal to ΓΓΓΓ.  One can also 

take this in the reverse direction; if  f : A →→→→ B  is a function such that its graph ΓΓΓΓ lies in 

A ×××× D for some subset  D  ⊂⊂⊂⊂  B, then it is often either convenient or even mandatory to 

view the graph as also defining a related function  f : A →→→→ D.   
 

The need to specify codomains is often important in computer science; for example, in 
computer programs one must often declare whether the numerical values of certain 
functions should be integer variables or real (floating point) variables.   
 

Example of a function.  If RRRR is the set of real numbers, then the function f  given by the 

standard formula  f (x)  =  x 
2
 is given formally by ( (RRRR, RRRR) , P )  where P denotes the set 

of all ordered pairs of real numbers (x, y) such that  y  =  x 
2  (a parabola).  Similar 

considerations apply for most of the functions that arise in differential and integral 

calculus.  On the other hand, the set of all ordered pairs (x, y) such that  x  =  y 
2
  does 

not define a function on the real line because for some values of  x  there are either 

zero or two values of  y satisfying the given equation.  Even if one restricts to the 

nonnegative real numbers, there are two values of  y  corresponding to each positive 

value of  x.   
 
When are two functions equal?   In set theory, one of the first issues is to state the 
standard criterion for two sets to be equal.  There is also a standard criterion for two 
functions to be equal. 
 

Proposition (Equal functions).  Let  f : A →→→→ B  and  g: A →→→→ B be functions.  Then f  =  g  

if and only if  f (x)  =  g (x)  for every  x ∈∈∈∈ A. 
 

PROOF.  If  f  =  g  then their graphs are equal to the same set, which we shall call G.  By 

definition of a function, for each  x ∈∈∈∈ A  there is a unique  b ∈∈∈∈ B  such that (x, b) ∈∈∈∈ G, and it 

follows that  b  must be equal to both  f (x) and  g (x).  Conversely, if  f (x)  =  g (x)  for every  

x ∈∈∈∈ A, then for each choice of  x  we know that the graphs of  f  and  g  both contain the 

ordered pair  (x, b)  where  b  =  f (x)  =  g (x) .  Since for each  x  the graphs of  f  and  g  

each contain exactly one point whose first coordinate is  x, it follows that these graphs are 

equal.  By the definition of a function, this implies  f  =  g.  
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Composite functions 

 
We shall begin with a few ways of constructing new functions out of given data which 
arise in precalculus and calculus courses. 
 

One basic construction is to form the composite by taking a function of a function.  For 

example, the composite of  sin x  and  2x + 1 is the function sin (2x + 1), and the 

composite of the functions 1 + x 

3
 and e 

x
 is equal to 1 + e 

3x
.  More generally, if  f  and g 

are suitable functions, then one can form the composite g ( f (x) ) by first applying  f  to  

x  and then applying g to the resulting value  f (x).  This definition requires that the 

value  x  must be in the domain of  f  and  f (x)  must be in the domain of  g.   To 
illustrate how this compatibility property might not hold, we note that over the real 

numbers one cannot form the composite function  sqrt ( sin x – 2 )  because the 
expression inside the radical sign is always negative and in elementary calculus one 
can only define square roots for nonnegative numbers. 
 

Formally, we proceed as follows: 
 

Definition.   If  f : A →→→→ B  and  g: B →→→→ C are functions, then the composite function  
 

g      
oooo f : A →→→→ C 

 

is defined by  g      
oooo f (x)   =  g ( f (x) ).  Frequently we shorten  g      

oooo f  to  g f . 
 

Example.  Suppose that  f (x)   =  7x – 4  and  g (x)  =  3x + 2.   Then direct 

calculation shows that  g      
oooo f (x)   =  21x – 10. 

 

Pictorially one often represents a composite by a so – called commutative diagram, 
the idea being that if one follows the arrows from one object to another, the end result is 
independent of the path taken. 

 
 

During the past century the use of commutative diagrams has become extremely 

widespread in the mathematical sciences and in some closely related areas (e.g., some 

branches of theoretical physics).   
 
 

Composition of functions is associative but not commutative.  We shall establish the first 
by proving a proposition and the second by furnishing examples. 
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Associativity of composition.  Suppose that  f : A →→→→ B,    g: B →→→→ C,  and  h: C →→→→ D  

are functions. Then we have the associativity identity  h      
oooo ( g      

oooo f )  =  ( h      
oooo g ) oooo f . 

 

PROOF.  This follows directly from the definition of functional composition. If  x  ∈∈∈∈  A  is 

arbitrary, then we have the following chain of equtions:  
  

h      
oooo ( g      

oooo f ) (x)  =  h(( g      
oooo f ) (x))  =  h(( g(f  (x))))  =  ( h      

oooo g ) (f  (x))  =  ( ( h      
oooo g ) oooo f ) (x)  

 

By the proposition on equality of functions, it follows that the two composites in the 
statement of the result must be equal. 
  

The proof may be illustrated by the following commutative diagram 
 

 
 

in which the two triangles Δ ABC and Δ BDC commute; it follows from associativity that 

the parallelogram ���� ABDC also commutes. 
 

Failure of commutativity.  One fundamental reason why composition is not 

commutative (i.e.,  g      
oooo f  ≠≠≠≠  f      

oooo g in general) is that the existence of one of the 

composites  g      
oooo f  or  f      

oooo g  does not guarantee the existence of the other.  For example, 

this happens whenever we have  f : A →→→→ B and  g: B →→→→ C  where A, B and C are all 

distinct.  In order to define both composites we need to have  A  =  C, and if  B  ≠≠≠≠  A   

there is still no way  g      
oooo f  and  f      

oooo g  can be equal because they still have different 
domains and codomains.  Thus the only remaining situations in which one can ask 

whether the composites in both orders are equal are those where A  =  B  =  C.  The 
example below shows that commutativity fails even in such a restricted setting.  
 

Example.  Let  A  =  B  =  RRRR, let  f (x)   =  x + 3, and let  g (x)  =  x 
2
.  Then the 

composite  g      
oooo f (x)  is equal to (x + 3) 

2
, but the reverse composite  f      

oooo g ( x)   is equal to 

x 
2
 + 3,   so that  g      

oooo f  and  f      
oooo g  are completely different functions.  In particular, their 

values at  x  =  0  are unequal.  

 
Images and inverse images 

 
In working change of variables problem in calculus, it is usually necessary to find the 

image or the inverse image of a set under some function.   Here are the formal 
definitions: 
 



5 
 

Definition.   Let  f : A →→→→ B  be a function, and let  C  ⊂⊂⊂⊂  A.  Then the image of  C 

under (the mapping)  f  is the set   
 

f [C ]   =    {   y ∈∈∈∈ B | y =  f (x)  for some  x ∈∈∈∈ C  } 

Similarly, if D  ⊂⊂⊂⊂  B  then the inverse image of  D under (the mapping)  f  is the set 
 

f  
–

 
1
[D ]   =    {   x ∈∈∈∈ A |   f (x) ∈∈∈∈ D  }. 

 

The set  f [A ], which is the image of the entire domain under  f, is often called the 

image or range of the function. 
 

Comment on notation.   Writers often use parentheses to denote images and inverse 

images by  f (C )  and  f  
–

 
1
(D ) rather than  f [C ]  and  f  

–
 
1
[D ].  In most cases this 

should cause no confusion, but there are some exceptional situations where problems 

can arise, most notably if the set  Y  =  A  or  B  contains an element  x  such that both 

x ∈∈∈∈ A  and  x ⊂⊂⊂⊂ A.  Such sets are easy to manufacture; in particular, given a set  x  

we can always form  A  =  x  ∪∪∪∪  { x }, but in practice the replacement of brackets by 
parentheses is almost never a source of confusion.  However, we shall consistently (try 
to) use square brackets to indicate images and inverse images. 
 

By definition we know that { f (x) } =   f 
 [{ x }].  One often also sees abuses of 

notation in which an inverse image of a one point set   f  
–

 
1

 [{ x }]  is simply written in 

the abbreviated form  f  
–

 
1

 ( y).  In such cases it is important to recognize that the latter 

is a subset of the domain and not an element of the latter (the subset may be empty or 

contain more than one element).    
 

Example.   Suppose that  A  =  B  =  RRRR,    f (x)   =  x 
2
,  and  C  is the closed interval 

[2, 3].  Then  f [C ]  is equal to the closed interval [4, 9], and if  C  is the closed interval 

[ – 1, 1]  then  f [C ]  is equal to the closed interval [0, 1].  Similarly, if  D  is the closed 

interval  [16, 25]  then  f  
–

 
1
[D ]  equals the union of the two intervals  [ – 5, – 4]   and 

[4, 5],  while if  D  is the closed interval  [ – 9, 4]  then  f  
–

 
1
[D ] equals the closed 

interval  [ – 2, 2].   Note that the latter is also the inverse image of  [L, 4]  where  L  is 
an arbitrary nonpositive number because no real number whose square is negative. 
 
In more advanced courses it is sometimes necessary to know something about the 

behavior of images and inverse images under set – theoretic operations such as union, 
intersection and taking relative complements.   The main identities are summarized in 

the following result: 
 

Theorem,   If  f : A →→→→ B  is a function, then the image and inverse image constructions 

for  f  have the following properties: 
 

1. If  VVVV  is a family of subsets of A, then  f [∪∪∪∪ C ∈∈∈∈ VVVV
 C ]   =   ∪∪∪∪ C ∈∈∈∈ VVVV  f [C ]. 
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2. If  VVVV  is also a nonempty family of subsets of A, then we 

have then  f [∩∩∩∩  C ∈∈∈∈ VVVV
 C ]   ⊂⊂⊂⊂   ∩∩∩∩  C ∈∈∈∈ VVVV  f [C ]  and the 

containment is proper in some cases.  

3. If  C  is a subset of  A,  then  C  ⊂⊂⊂⊂  f  
–

 
1[ f [C ] ] .  

 

4. If  WWWW  is a family of subsets of B,  then we have  

f  
–

 
1

 [∪∪∪∪ D ∈∈∈∈ WWWW
 D ]   =   ∪∪∪∪ D ∈∈∈∈ WWWW  f  

–
 
1

 [D ]. 
5. If  WWWW  is also a nonempty family of subsets of B, 

then  f  
–

 
1

 [ ∩∩∩∩ D ∈∈∈∈ WWWW
 D ]   =   ∩∩∩∩ D ∈∈∈∈ WWWW  f  

–
 
1

 [D ] .   

6. If D is a subset of B, then  f [  f  
–

 
1

 [D ] ]  ⊂⊂⊂⊂  D.  

7. If D is a subset of B, then   f  
–

 
1

 [B – D]  =   A  –  f  
–

 
1

 [D ] .  
 
PROOF.   Each statement requires separate consideration. 
 

Verification of (1):   Suppose that  y  ∈∈∈∈  f [∪∪∪∪ C ∈∈∈∈ VVVV
 C ].  Then  y  =   f (x)  for some 

element  x   belonging to  ∪∪∪∪ C ∈∈∈∈ VVVV  f [C ]; for the sake of definiteness say that y  ∈∈∈∈  C0 .   

It follows that  y  ∈∈∈∈  f [C0 ],  and since the latter is contained in  ∪∪∪∪ C ∈∈∈∈ VVVV  f [C ]  it follows 

that the original element  y  belongs to  ∪∪∪∪ C ∈∈∈∈ VVVV  f [C ].   Conversely, if  y  ∈∈∈∈  ∪∪∪∪ C ∈∈∈∈ VVVV  f [C ] 

and we choose  C0 so that  y  ∈∈∈∈  C0,  then y  =   f (x)  for  x  ∈∈∈∈ C0  and the inclusion 

C0   ⊂  ∪∪∪∪ C ∈∈∈∈ VVVV
 C  combine to imply that  y  ∈∈∈∈  f [∪∪∪∪ C ∈∈∈∈ VVVV

 C ].   Hence the two sets in the 

statement are equal. 
 

Verification of (2):   Suppose that  y  ∈  f [∩∩∩∩  C ∈∈∈∈ VVVV
 C ].  Then  y  =   f (x)  for some 

element  x   belonging to  ∩∩∩∩  C ∈∈∈∈ VVVV
 C,  and therefore  y  ∈∈∈∈  f [C] for each C  ∈  VVVV.  But 

this means that  y belongs to  ∩∩∩∩  C ∈∈∈∈ VVVV  f [C ], and this proves the containment assertion.  

To see that this containment may be proper, consider the function  x 
2
  from the real 

numbers to themselves, and let B and C denote the closed intervals [ – 1, 1] and [0, 1] 

respectively.  Then  f [B ∩∩∩∩ C]  =  { 0 } but  f [B] ∩∩∩∩  f [C]  =  [0, 1].   
 

Verification of (3):   If  x  ∈∈∈∈ C then  f (x) ∈∈∈∈  f [C], and therefore  x  ∈∈∈∈ f  
–

 
1
[ f [C ] ] , 

proving the containment assertion.   
 

Verification of (4):   Suppose that  x  ∈∈∈∈  f  
–

 
1

 [∪∪∪∪ D ∈∈∈∈ WWWW
 D ].  By definition we then know 

that   f (x) ∈∈∈∈ ∪∪∪∪ D ∈∈∈∈ WWWW
 D, and for the sake of definiteness let us say that  f (x) ∈∈∈∈  D0 .   It 

follows that  x  ∈∈∈∈   f  
–

 
1

 [D0 ],  and since the latter is contained in  ∪∪∪∪ D ∈∈∈∈ WWWW  f  
–

 
1

 [D ]  we 

conclude that  f  
–

 
1

 [∪∪∪∪ D ∈∈∈∈ WWWW
 D ]   ⊂⊂⊂⊂   ∪∪∪∪ D ∈∈∈∈ WWWW  f  

–
 
1

 [D ].   
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Conversely, suppose that we have  x  ∈∈∈∈  ∪∪∪∪ D ∈∈∈∈ WWWW  f  
–

 
1

 [D ].    Once again, for the sake of 

definiteness choose D0  so that  x  ∈∈∈∈  f  
–

 
1

 [D0 ].  We then have that  f (x) ∈∈∈∈  D0 , where 

the latter is contained in  ∪∪∪∪ D ∈∈∈∈ WWWW  f  
–

 
1

 [D ],  so that  f (x)  belongs to the set  ∪∪∪∪ D ∈∈∈∈ WWWW
 D. 

This implies that  x  ∈∈∈∈  f  
–

 
1

 [∪∪∪∪ D ∈∈∈∈ WWWW
 D ].   Therefore we have shown that each of the 

sets under consideration is contained in the other and hence they must be equal. 
 

Verification of (5):   Suppose that  x  ∈∈∈∈  f  
–

 
1

 [∩∩∩∩D ∈∈∈∈ WWWW
 D ].  Then  f (x)  =   y  for some 

element  y  belonging to  ∩∩∩∩D ∈∈∈∈ WWWW
 D, so that  y  ∈∈∈∈  D for each D  ∈∈∈∈  WWWW.   Thus we have  

x  ∈∈∈∈  f  
–

 
1

 [D ]  for each D  ∈∈∈∈  WWWW,  which means that  x  belongs to  ∩∩∩∩ D ∈∈∈∈ WWWW  f  
–

 
1

 [D ], 
and this proves one containment direction.    
 

Conversely, suppose  x  ∈∈∈∈  ∩∩∩∩ D ∈∈∈∈ WWWW  f  
–

 
1

 [D ].   Then by definition we know that  f (x)  ∈∈∈∈  

D for every D  ∈∈∈∈  WWWW, so that we must also have  f (x)  ∈∈∈∈  ∩∩∩∩ D ∈∈∈∈ WWWW
 D.   .But this means 

that  x  ∈∈∈∈  f  
–

 
1

 [∩∩∩∩D ∈∈∈∈ WWWW
 D ],  proving containment in the other direction; it follows that 

the two sets under consideration must be equal.  
 

Verification of (6):   If   y  ∈∈∈∈  f [  f  
–

 
1

 [D ] ], then  y  =   f (x)  for some  x  ∈∈∈∈  f  
–

 
1

 [D ], 

and by definition of the latter we know that  f (x)  ∈∈∈∈  D; since y  =   f (x)  this means 

that y  must belong to D, proving the containment assertion.   
 

Verification of (7):   Suppose first that  x  ∈∈∈∈  f  
–

 
1

 [B – D].   By definition we know that 

f (x)  ∈∈∈∈  B – D, and in particular it follows that  f (x)  ∉∉∉∉  D, so that  x  ∉  f  
–

 
1

 [D ].  

The latter in turn implies that  x  ∈∈∈∈  A  –  f  
–

 
1

 [D ], and thus we have established the 

containment of  f  
–

 
1

 [B – D] in  A  –  f  
–

 
1

 [D ].   Conversely, if  x  ∈∈∈∈  A  –  f  
–

 
1

 [D ],  

then  x  ∉  f  
–

 
1

 [D ] implies  f (x)  ∉∉∉∉  D, so that  f (x)  ∈∈∈∈  B – D and therefore we have  

x  ∈∈∈∈  f  
–

 
1

 [B – D].   This yields containment in the other direction. 

 
Notes.    In the next lecture, we shall prove that equality holds for parts (3) and (6) if the 
function f satisfies an additional condition (there are separate ones for each part).  

Likewise, there are results for comparing   f  [A – C]  to  B  –  f  [C ]  in  some  cases 

(see the exercises). 
  


