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L08 
 

Functions – I I 
 

 
This is a continuation from the previous lecture, starting with more properties of the 
images and inverse images of functions. 
 

Composition, images and inverse images.  The image and inverse image 
constructions are highly compatible with composition of functions. 
 

Proposition.   Suppose that  f : A →→→→ B  and  g: B →→→→ C are functions, and let M and N 

denote subsets of A and C respectively.  Then we have  
 

g      
oooo f [M ]   =   g [ f [M ] ]        and        (g      

oooo f ) 
– 1 [N]  =  f  

–
 
1

 [ g  
– 1

 [N] ]. 
 

Proof.  We shall first verify that  g      
oooo f [M ]   =   g [ f [M ] ].   Suppose that  z  =  g      

oooo f  (x) 

for some  x  ∈∈∈∈  M.  Since  g      
oooo f (x)  =  g( f  (x)) it follows that  we have z  =  g ( y) where 

y  =   f (x)  and  x  ∈∈∈∈  M.  Therefore  y ∈∈∈∈ f [M ]  and consequently we must also have 

z  ∈∈∈∈  g [ f [M ] ].  To prove the reverse inclusion, suppose that  z  ∈∈∈∈  g [ f [M ] ], so that 

z  =  g ( y) where  y  =   f (x)  and  x  ∈∈∈∈  M.  We may then use g      
oooo f (x)  =  g(f  (x)) to 

conclude that  y  ∈∈∈∈  g      
oooo f [M ], completing the proof of the second inclusion and thus 

also the proof that the two sets under consideration are equal.    
 

We shall next verify that (g      
oooo f) 

– 1 [N]  =  f  
–

 
1

 [ g  
– 1

 [N] ].  Suppose that  x  belongs to the 

set  (g      
oooo f) 

– 1 [N].  By definition we have  g      
oooo f (x)  ∈∈∈∈ N, and since g      

oooo f (x)  =  g(f  (x)) it 

follows that  f (x)  ∈∈∈∈  g  
– 1

 [N].  The latter in turn implies that  x  ∈∈∈∈  f  
–

 
1

 [ g  
– 1

 [N] ], and 

this proves containment in one direction.   To prove containment in the other direction, 

suppose that  x  ∈∈∈∈  f  
–

 
1

 [ g  
– 1

 [N] ] .  Working backwards, we see that  f (x)  ∈∈∈∈  g  
– 1

 [N], 

so that  g      
oooo f (x)  =  g(f  (x)) ∈∈∈∈ N,  which implies that  x  ∈∈∈∈ (g      

oooo f) 
– 1 [N].  This proves 

containment in the other direction and hence that the two sets under consideration are 

equal.  
 

Inclusion functions and restrictions to subsets.   If  C  is a subset of A, then there is 

an inclusion function  i C ⊂⊂⊂⊂ A : C →→→→ A whose graph is the diagonal set of all (x, x)  

where x  ∈∈∈∈  C.  One reason for introducing this function is that there are some 

constructions on functions  K  and inclusions  C ⊂⊂⊂⊂ A  such that K(C) is not necessarily 
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a subset of K(A).  Another reason is that it gives a formal basis for restricting a function 

to a subset.  Specifically, if f : A →→→→ B  is a function and C  is a subset of A,   then the  

restriction of  f to  C is the composite function  f oooo   i C ⊂⊂⊂⊂ A : C →→→→ B; this restricted 

function is generally denoted by f  | C.  If the graph of  f  is the set  G  ⊂⊂⊂⊂  A ×××× B, then 

the graph of  f  | C is the subset G ∩∩∩∩ (C ×××× B).   

 
Special types of functions 

 
Definition.   Given a set  A, the identity function, denoted by id A  or  1A : A  →→→→ A, is 

the function whose graph is the set of all (x, y) such that  y  =  x.   It is an important 

special case of the inclusion mapping described above with  C  =  A.    
 
Identity maps and composition of functions satisfy the following simple but important 

condition. 
 

Proposition.   If  f : A →→→→ B is a function, then we have 1B  oooo f  =  f   =  f  
oooo    1A . 

 

Proof.  Let x  ∈∈∈∈ A be arbitrary.  Then we have  1B  oooo f (x)  =   1B (  f (x) )  =  f (x) and 

we also have  f (x)  =  f (1A (x) )  =   f  
oooo    1A (x).  We can now apply proposition on 

equality of functions to conclude that the three functions 1B  oooo f,  f , and f  
oooo    1A  are 

equal. 
 

One familiar example of an identity function is given on (a subset of) the real line by the 

familiar formula  f (x)   =  x .   Another example the identity permutation on a set of  n  

letters where  n  is some positive integer. 
 

More defintions.  Let  f : A →→→→ B  be a function.   
 

1. The function   f  is  one – to – one  or  1 – 1  if for all  x, y ∈∈∈∈ A, we have f (x)   = 

f ( y)   if and only if x = y.  Such a map is also said to be injective or an injection 

or a monomorphism or an embedding (sometimes also spelled imbedding). 
 

2. The function  f  is onto  if for every  y ∈∈∈∈ B  there is some  x ∈∈∈∈ A such that  f (x)   

=  y.  Such a map is also said to be surjective or a surjection or an 
epimorphism.  

 

3. The function  f  is 1 – 1 and onto (or 1 – 1 onto  or a  1 – 1 correspondence) 
if it is both 1 – 1  and onto.  Such a map is also said to be bijective or a 

bijection  or an isomorphism.  If  A = B  is a finite set, such a map is often 

called a permutation of  A. 
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The following observation is a direct consequence of the definitions. 
 

Proposition.  Let  f : A →→→→ B  be a function.  Then  f  is surjective if and only if its range 

is equal to its codomain, or equivalently if and only if  f  [ A]  =  B. 
 

This follows immediately because the range of  f  is equal to  f  [ A]  by definition. 
 

Examples of injections.   If  A is a set and C  is a subset of  A, then the previously 

defined inclusion mapping  i : C →→→→ A   is an injection because i (x)  =  x for all x, so that 

the condition  i (x)  =  i ( y)  is equivalent to saying that  x  =  y .  On the other hand, the 

inclusion i is a surjection if and only if  C  =  A. 
 

Examples of surjections.   Let A and B  be sets, and let A ×××× B denote their Cartesian 

product.  The (coordinate) projection mappings  ππππ A : A ×××× B →→→→ A  and ππππ B : A ×××× B →→→→ B 

onto A and B respectively are defined by  ππππ A (x, y)  =  x  and  ππππ B  (x, y)  =  y .  These 

are also called the projections onto the first (A – ) and second (B – )  coordinates.  If 

both A and B are nonempty, then these mappings are always surjective.  On the other 

hand, the projection ππππ A is injective if and only if B consists of a single point, and 

likewise the projection ππππ B is injective if and only if A consists of a single point. 
 

Logical independence of injectivity and surjectivity.  The standard way of showing 
independence is to give an example of a function that is injective but not surjective and 
an example that is surjective but not injective.  For the former, consider the elementary 

function f : RRRR  →→→→ RRRR  defined by f (x)   =  arctan  x. This is defined for all real numbers 

and is strictly increasing, so it is automatically injective, but it is not surjective 

because its range is the open interval ( – ππππ/2, ππππ/2 ).  An example of a function that is 

surjective but not injective is given by  f (x)   =  x 3 –  x.  The function is surjective 

because for each y one can find a real solution to the cubic equation  x 3 –  x  =  y.  

However, it is not injective because  f (0)  =  f (1)  =   f (– 1)  =  0. 
  

Observe also that the function  f (x)   =  x 2 is  neither injective nor surjective because 

f (1)  =   f (– 1)  and it is not possible to find a real number x such that x 2  =  – 1. 
 
The following simple factorization principle turns out to be extremely useful for many 
purposes: 
 

Proposition (Injective – surjective factorization).   Let  f : A →→→→ B  be a function.  Then 

f is equal to a composite j  q, where q: A →→→→ C is surjective and  j : C →→→→ B is injective.   
 

Proof.   Let C be the image of  f, and define  q  such that the graphs of  q  and  f  are 

equal. Take  j  to be the inclusion of  C  in  B (hence it is injective).   By construction q 

is surjective, and it follows immediately that  f (x)   =  j ( q (x) ) for all  x in A. 
 

Notes.   The factorization of a function into a surjection followed by an injection is rarely 
unique, but there is a close relationship between any two such factorizations whose 
proof is left to the exercises for this section.  Another exercise proves the existence of a 
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second factorization  Q  J, where Q  is surjective and J  is injective.   This also turns 
out to be useful in certain contexts. 
 

Proposition (Composition and injections/surjections). Let  f : A →→→→ B and g : B →→→→ C 
be functions.  
 

(1) If  f  and  g  are surjections, then so is  g      
oooo f. 

 

(2) If  f  and  g  are injections, then so is  g      
oooo f. 

 

(3)   If  f  and  g  are bijections, then so is  g      
oooo f . 

 

Proof.  The third statement follows from the first two, so it suffices to prove these 
assertions.  
  

Verification of (1):   Assume  f  and  g  are onto.  Let  c  ∈∈∈∈  C  be arbitrary. Since  g  is 

onto we can find some  b  ∈∈∈∈  B  such that g ( b)   =  c.  Since f is also onto there is 

some  a  ∈∈∈∈  A  such that  f (a)   =  b.  But then g      
oooo f  (a)  =  g (  f  (a)) =  g ( b)   =  c. 

Therefore  g      
oooo f    is onto. 

 

Verification of (2):   Assume f  and  g  are  1 – 1.  Take elements a1, a2  ∈∈∈∈  A  and 

suppose that g      
oooo f (a1)  =  g      

oooo f (a2).  Then  g (  f  (a1)) =  g (  f  (a2))  by the definition of a 

composite.   Therefore  f  (a1) =  f  (a2)  because  g is 1 – 1;  since  f  is also 1 – 1 it 

follows next that a1 =  a2.  This shows that  g      
oooo f    is 1 – 1. 

 

If a function  f : A →→→→ B  is either 1 – 1 or onto, then one can prove strengthened forms 

for some of the results on images and inverse images of subsets with respect to  f. 
 

Theorem.  If  f : A →→→→ B  is a function, then the image and inverse image constructions 

for  f  have the following properties: 
 

1. If  f  is 1 – 1 and  C  is a subset of A,  then  C   =   f  
–

 
1[ f [C ] ].  

2. If  f  is onto and  D  is a subset of B,  then  f [  f  
–

 
1

 [D ] ]  =  D.  
 

Proof.   As in the proof of the earlier result, we treat each statement separately.  
 

Verification of (1):   By the earlier result, we already know C  ⊂⊂⊂⊂  f  
–

 
1[ f [C ] ].  

Suppose now that  f  is 1 – 1  and  y  ∈∈∈∈  f  
–

 
1[ f [C ] ].   By definition we know that  f  (y) 

=  f  (x)  for some  x  ∈∈∈∈  C.  Since  f  is 1 – 1 this implies  y  =  x, and therefore we 

must have  y  ∈∈∈∈  C.  Hence the two sets under consideration are equal if  f  is 1 – 1. 
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Verification of (2):   By the earlier result, we already know  f [  f  
–

 
1

 [D ] ]  ⊂⊂⊂⊂   D. 

Suppose now that  f  is onto, and let  y ∈∈∈∈ D.   Then there is some  x  ∈∈∈∈ f  
–

 
1

 [D ] such 

that  y  =  f  (x).   Therefore  y  must belong to  f [  f  
–

 
1

 [D ] ] if  f  is onto, proving 

containment in the other direction in this case.  

 
Inverse functions 

 
In some situations, it is possible to undo the results of a function by taking the inverse 

function.  For example, the cube root function is the inverse of x
 3

, the natural logarithm 

function is the inverse of e 
x
, and  arctan  x is the inverse to  tan  x if the latter is 

viewed as a function which is defined on the open interval ( – ππππ/2, ππππ/2 ).    Frequently 
we say that a function is invertible if an inverse exists.  It turns out that a function is 
only invertible if it is a bijection. 
 

Definition.   Let  f : A →→→→ B  be a function.  A function  g : B →→→→ A is said to be an 

inverse function to  f  if for all a ∈∈∈∈ A we have  g ( f (a ) )  =  a  and for all b ∈∈∈∈ B we 

have f  ( g (b ) )  =  b.  By the definition of the identity function, this is equivalent to the 

conditions  g      
oooo f  =  1A  and  f      

oooo g  =  1B. 
  

Elementary examples.  If A denotes the real numbers, B denotes the positive real 

numbers, and  f (x) =  e 
x
, then  f  has an inverse function  g  which is the logarithm of 

x to the base e.  Similarly, if A  =  B  =  RRRR  and  f (x) =  2 x  +  4, then  f  has an 

inverse  g  given by g (x)  =  ½ x – 2.  Clearly many other examples of this sort arise in 
trigonometry and calculus. 
 

Proposition (Characterization of inverse functions).  Let  f : A →→→→ B  be a bijection, 

and define a function  f  
–

 
1
: A →→→→ B by taking  f  

–
 
1

 (b) to be the unique a ∈∈∈∈ A such that  

f (a) =  b; equivalently, the graph of  f  
–

 
1 

is the set of all ordered pairs ( y, x) such that 

( x, y) lies in the graph of  f.  Then f  
–

 
1 is well-defined, and it is an inverse of  f (in fact, it 

is the unique inverse in view of the next proposition). 
 

The condition on the graph can be restated as “x  =  f  
–

 
1

 (y)  if and only if  y  =  f  (x).” 
 

PROOF.  There is at least one a such that b  =  f  (a)  since  f   is onto, and there cannot 

be more than one such a since  f  is 1 – 1. Therefore  f  
–

 
1
 is a well – defined function. 

Since the graph of  f  
–

 
1 

is the set of all ordered pairs ( f  (x), x) the definitions imply that  

f  
–

 
1
 satisfies the conditions for being an inverse to  f.  
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Proposition (Functions with inverses are bijections).  Let  f : A →→→→ B be a function.  
If  f  has an inverse  g, then  f  is a bijection and the inverse is unique (and it is equal to 

f  
–

 
1 

as defined above). 
 

Proof.  Assume that the mapping  f  has an inverse  g.  To show that  f  is onto, take b 

∈∈∈∈ B.  Then  f  ( g (b ) )  =  b, so b lies in the  image of f.  To show that  f is 1 – 1, 

consider an arbitrary pair of elements  a1, a2  ∈∈∈∈  A,  and suppose that  f  (a1) =  f  (a2)  .  

Then  g ( f (a1 ) )  =  g ( f (a2 ) ) , and since  g      
oooo f  =  1A  it follows that a1 =  a2. To show 

that the inverse is unique, suppose that  g  and  h  are both inverses to  f.  We must 

show that  g  =  h.   Let b ∈∈∈∈ B  be arbitrary.  Then f  ( g (b ) )  =  f  ( h (b ) )  =  b 

because g  and  h  both inverses, and since f is 1 – 1 we must have  g(b ) =   h(b )   
for all b.  By the proposition on equality of functions, we conclude that  g  =  h. 
  

In view of the preceding proposition, one way of showing that a function is a bijection is 

to show that it has an inverse.  
 

The construction sending a bijective function to its inverse has several basic properties 

that are summarized in the next result. 
 
Proposition (Identities involving inverse functions).   The inverse function 

construction has the following properties: 
 

1. Let A be a set.  Then the identity map  1A  is a bijection, and it is 

equal to its own inverse. 
 

2. Suppose that  f : A →→→→ B and  g: B →→→→ C  are bijections so that their 

composite g      
oooo f is also a bijection by a previous result. Then the 

function (g      
oooo f ) 

– 1 is equal to  f  
–

 
1

 
oooo g  

– 1. 
 

3. If  f : A →→→→ B is a bijection with inverse f  
–

 
1
,  then  f  

–
 
1
: A →→→→ B is 

also a bijection, and its inverse is equal to  f . 
 

Proof.  We shall derive all of these from the conditions v    u  =  id X  and  u    v  =  id Y 

which characterize a function  u : X →→→→ Y  and its inverse  v : Y →→→→ X.   If  u  =  id A  then 

we also have  v  =  id A   because  id A    id A   =  id A , proving the first part.  To prove 

the second part,  we take  X  =  A,  Y  =  C, and u  =  g      
oooo f .   If we now set  v  equal to 

f  
–

 
1

 
oooo g  

– 1, then the propostion on the associativity property for compositions and the 

proposition on composites with identity maps combine to imply that the composites v    u  

and  u    v  are both identity maps.  Finally, if we take  X  =  B,  Y  =  A, and  u  =  f  
–

 
1
,  

then  v  =  f  has the property that the composites  v    u  and  u    v  are both identity 

maps.   
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Example.   Here is an illustration of the identity  (g      
oooo f ) 

– 1   =   f  
–

 
1

 
oooo g  

– 1
 using the 1 – 1 

and onto functions  f : RRRR →→→→ (0, ∞)  defined by  f  (x)  =  e 
x
 and  g : (0, ∞)

 
 →→→→ (0, 1)  

defined by  g  (y)  =  y / (1 + y)  as examples:  The composite function  g      
oooo f  is given by  

z  =  e 
x

 / (1 + e 
x
), and if we solve this for  z  we obtain the equation   

 

x  =  ln (z / (1 –  z) ). 
 

Since g  
– 1

 (z) is equal to the expression inside the parentheses and ln y  =  x  is the  

inverse to  y  =  e 
x
, this example does satisfy the formula for finding the inverse function 

of a composite.  
 

Comment (caution).  If  f : RRRR →→→→ RRRR     is a 1 – 1  onto function given in terms of the 

functions studied in a first year calculus course, there is no guarantee that its inverse 
function can also be expressed in such terms.  One relatively simple example is the 

Lambert W – function W(z) which is given by the identity  
 

W(z) e 
W(z)

 = z. 
 

Additional details are given in the following subdirectory file: 
 

http://math.ucr.edu/~res/math144-2022/week04/lambert-fcn.pdf  
 
  


