Functions – II

This is a continuation from the previous lecture, starting with more properties of the images and inverse images of functions.

<u>Composition, images and inverse images.</u> The image and inverse image constructions are highly compatible with composition of functions.

<u>Proposition</u>. Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions, and let M and N denote subsets of A and C respectively. Then we have

$$g \circ f[M] = g[f[M]]$$
 and $(g \circ f)^{-1}[N] = f^{-1}[g^{-1}[N]].$

Proof. We shall first verify that $g \circ f[M] = g[f[M]]$. Suppose that $z = g \circ f(x)$ for some $x \in M$. Since $g \circ f(x) = g(f(x))$ it follows that we have z = g(y) where y = f(x) and $x \in M$. Therefore $y \in f[M]$ and consequently we must also have $z \in g[f[M]]$. To prove the reverse inclusion, suppose that $z \in g[f[M]]$, so that z = g(y) where y = f(x) and $x \in M$. We may then use $g \circ f(x) = g(f(x))$ to conclude that $y \in g \circ f[M]$, completing the proof of the second inclusion and thus also the proof that the two sets under consideration are equal.

We shall next verify that $(g \circ f)^{-1}[N] = f^{-1}[g^{-1}[N]]$. Suppose that x belongs to the set $(g \circ f)^{-1}[N]$. By definition we have $g \circ f(x) \in N$, and since $g \circ f(x) = g(f(x))$ it follows that $f(x) \in g^{-1}[N]$. The latter in turn implies that $x \in f^{-1}[g^{-1}[N]]$, and this proves containment in one direction. To prove containment in the other direction, suppose that $x \in f^{-1}[g^{-1}[N]]$. Working backwards, we see that $f(x) \in g^{-1}[N]$, so that $g \circ f(x) = g(f(x)) \in N$, which implies that $x \in (g \circ f)^{-1}[N]$. This proves containment in the other direction and hence that the two sets under consideration are equal.

Inclusion functions and restrictions to subsets. If *C* is a subset of *A*, then there is an *inclusion function* $i_{C \subset A} : C \to A$ whose graph is the diagonal set of all (x, x) where $x \in C$. One reason for introducing this function is that there are some constructions on functions K and inclusions $C \subset A$ such that K(C) is not necessarily

a subset of **K(A)**. Another reason is that it gives a formal basis for restricting a function to a subset. Specifically, if $f: A \to B$ is a function and C is a subset of A, then the <u>restriction of f to</u> C is the composite function $f \circ i_{C \subset A} : C \to B$; this restricted function is generally denoted by f | C. If the graph of f is the set $G \subset A \times B$, then the graph of f | C is the subset $G \cap (C \times B)$.

Special types of functions

Definition. Given a set A, the *identity function*, denoted by id_A or $1_A : A \to A$, is the function whose graph is the set of all (x, y) such that y = x. It is an important special case of the inclusion mapping described above with C = A.

Identity maps and composition of functions satisfy the following simple but important condition.

Proposition. If $f: A \to B$ is a function, then we have $1_B \circ f = f = f \circ 1_A$.

Proof. Let $x \in A$ be arbitrary. Then we have $\mathbf{1}_B \circ f(x) = \mathbf{1}_B(f(x)) = f(x)$ and we also have $f(x) = f(\mathbf{1}_A(x)) = f \circ \mathbf{1}_A(x)$. We can now apply proposition on equality of functions to conclude that the three functions $\mathbf{1}_B \circ f$, f, and $f \circ \mathbf{1}_A$ are equal.

One familiar example of an identity function is given on (a subset of) the real line by the familiar formula f(x) = x. Another example the identity permutation on a set of n letters where n is some positive integer.

<u>More definitons.</u> Let $f: A \rightarrow B$ be a function.

- 1. The function f is <u>one to one</u> or 1 1 if for all $x, y \in A$, we have f(x) = f(y) if and only if x = y. Such a map is also said to be <u>injective</u> or an <u>injection</u> or a <u>monomorphism</u> or an <u>embedding</u> (sometimes also spelled <u>imbedding</u>).
- 2. The function f is <u>onto</u> if for every $y \in B$ there is some $x \in A$ such that f(x) = y. Such a map is also said to be <u>surjective</u> or a <u>surjection</u> or an <u>epimorphism</u>.
- 3. The function f is 1 1 and onto (or 1 1 onto or a 1 1 correspondence) if it is both 1 - 1 and onto. Such a map is also said to be <u>bijective</u> or a <u>bijection</u> or an <u>isomorphism</u>. If A = B is a finite set, such a map is often called a <u>permutation</u> of A.

The following observation is a direct consequence of the definitions.

Proposition. Let $f: A \rightarrow B$ be a function. Then f is surjective if and only if its range is equal to its codomain, or equivalently if and only if f[A] = B.

This follows immediately because the range of f is equal to f[A] by definition.

Examples of injections. If A is a set and C is a subset of A, then the previously defined inclusion mapping $i: C \rightarrow A$ is an injection because i(x) = x for all x, so that the condition i(x) = i(y) is equivalent to saying that x = y. On the other hand, the inclusion i is a surjection if and only if C = A.

Examples of surjections. Let *A* and *B* be sets, and let $A \times B$ denote their Cartesian product. The (coordinate) projection mappings $\pi_A : A \times B \to A$ and $\pi_B : A \times B \to B$ onto *A* and *B* respectively are defined by $\pi_A(x, y) = x$ and $\pi_B(x, y) = y$. These are also called the projections onto the first (A -) and second (B -) coordinates. If both *A* and *B* are nonempty, then these mappings are always surjective. On the other hand, the projection π_A is injective if and only if *B* consists of a single point, and likewise the projection π_B is injective if and only if *A* consists of a single point.

Logical independence of injectivity and surjectivity. The standard way of showing independence is to give an example of a function that is injective but not surjective and an example that is surjective but not injective. For the former, consider the elementary function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \arctan x$. This is defined for all real numbers and is strictly increasing, so it is automatically <u>injective, but it is not surjective</u> because its range is the open interval $(-\pi/2, \pi/2)$. An example of a function that is <u>surjective but not injective</u> is given by $f(x) = x^3 - x$. The function is surjective because for each y one can find a real solution to the cubic equation $x^3 - x = y$. However, it is not injective because f(0) = f(1) = f(-1) = 0.

Observe also that the function $f(x) = x^2$ is <u>*neither injective nor surjective*</u> because f(1) = f(-1) and it is not possible to find a real number x such that $x^2 = -1$.

The following simple factorization principle turns out to be extremely useful for many purposes:

Proposition (Injective – surjective factorization). Let $f: A \rightarrow B$ be a function. Then f is equal to a composite $j \circ q$, where $q: A \rightarrow C$ is surjective and $j: C \rightarrow B$ is injective.

<u>**Proof.**</u> Let **C** be the image of f, and define q such that the graphs of q and f are equal. Take j to be the inclusion of C in B (hence it is injective). By construction q is surjective, and it follows immediately that f(x) = j(q(x)) for all x in A.

<u>Notes.</u> The factorization of a function into a surjection followed by an injection is rarely unique, but there is a close relationship between any two such factorizations whose proof is left to the exercises for this section. Another exercise proves the existence of a

second factorization $Q \circ J$, where Q is surjective and J is injective. This also turns out to be useful in certain contexts.

Proposition (Composition and injections/surjections). Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.

- (1) If f and g are surjections, then so is $g \circ f$.
- (2) If f and g are injections, then so is $g \circ f$.
- (3) If f and g are bijections, then so is $g \circ f$.

Proof. The third statement follows from the first two, so it suffices to prove these assertions.

Verification of (1): Assume f and g are onto. Let $c \in C$ be arbitrary. Since g is onto we can find some $b \in B$ such that g(b) = c. Since f is also onto there is some $a \in A$ such that f(a) = b. But then $g \circ f(a) = g(f(a)) = g(b) = c$. Therefore $g \circ f$ is onto.

Verification of (2): Assume f and g are 1-1. Take elements $a_1, a_2 \in A$ and suppose that $g \circ f(a_1) = g \circ f(a_2)$. Then $g(f(a_1)) = g(f(a_2))$ by the definition of a composite. Therefore $f(a_1) = f(a_2)$ because g is 1 - 1; since f is also 1 - 1 it follows next that $a_1 = a_2$. This shows that $g \circ f$ is 1 - 1.

If a function $f: A \rightarrow B$ is either 1 - 1 or onto, then one can prove strengthened forms for some of the results on images and inverse images of subsets with respect to f.

Theorem. If $f: A \rightarrow B$ is a function, then the image and inverse image constructions for f have the following properties:

- 1. If f is 1-1 and C is a subset of A, then $C = f^{-1}[f[C]]$. 2. If f is onto and D is a subset of B, then $f[f^{-1}[D]] = D$.

Proof. As in the proof of the earlier result, we treat each statement separately.

Verification of (1): By the earlier result, we already know $C \subset f^{-1}[f[C]]$. Suppose now that f is 1-1 and $y \in f^{-1}[f[C]]$. By definition we know that f(y)f(x) for some $x \in C$. Since f is 1-1 this implies y = x, and therefore we must have $y \in C$. Hence the two sets under consideration are equal if f is 1 - 1.

<u>Verification of (2)</u>: By the earlier result, we already know $f[f^{-1}[D]] \subset D$. Suppose now that f is onto, and let $y \in D$. Then there is some $x \in f^{-1}[D]$ such that y = f(x). Therefore y must belong to $f[f^{-1}[D]]$ if f is onto, proving containment in the other direction in this case.

Inverse functions

In some situations, it is possible to undo the results of a function by taking the *inverse* function. For example, the cube root function is the inverse of x^3 , the natural logarithm function is the inverse of e^x , and **arctan** x is the inverse to **tan** x if the latter is viewed as a function which is defined on the open interval $(-\pi/2, \pi/2)$. Frequently we say that a function is *invertible* if an inverse exists. It turns out that a function is only invertible if it is a bijection.

Definition. Let $f: A \to B$ be a function. A function $g: B \to A$ is said to be an *inverse function* to f if for all $a \in A$ we have g(f(a)) = a and for all $b \in B$ we have f(g(b)) = b. By the definition of the identity function, this is equivalent to the conditions $g \circ f = 1_A$ and $f \circ g = 1_B$.

Elementary examples. If A denotes the real numbers, B denotes the positive real numbers, and $f(x) = e^x$, then f has an inverse function g which is the logarithm of x to the base e. Similarly, if $A = B = \mathbb{R}$ and f(x) = 2x + 4, then f has an inverse g given by $g(x) = \frac{1}{2}x - 2$. Clearly many other examples of this sort arise in trigonometry and calculus.

Proposition (Characterization of inverse functions). Let $f: A \to B$ be a bijection, and define a function $f^{-1}: A \to B$ by taking $f^{-1}(b)$ to be the unique $a \in A$ such that f(a) = b; equivalently, the graph of f^{-1} is the set of all ordered pairs (y, x) such that (x, y) lies in the graph of f. Then f^{-1} is well-defined, and it is an inverse of f (in fact, it is the **unique** inverse in view of the next proposition).

The condition on the graph can be restated as " $x = f^{-1}(y)$ if and only if y = f(x)."

PROOF. There is at least one *a* such that b = f(a) since *f* is onto, and there cannot be more than one such *a* since *f* is 1 - 1. Therefore f^{-1} is a well – defined function. Since the graph of f^{-1} is the set of all ordered pairs (f(x), x) the definitions imply that f^{-1} satisfies the conditions for being an inverse to f.

Proposition (Functions with inverses are bijections). Let $f: A \to B$ be a function. If f has an inverse g, then f is a bijection and the inverse is unique (and it is equal to f^{-1} as defined above).

Proof. Assume that the mapping f has an inverse g. To show that f is onto, take $b \in B$. Then f(g(b)) = b, so b lies in the image of f. To show that f is 1 - 1, consider an arbitrary pair of elements $a_1, a_2 \in A$, and suppose that $f(a_1) = f(a_2)$. Then $g(f(a_1)) = g(f(a_2))$, and since $g \circ f = 1_A$ it follows that $a_1 = a_2$. To show that the inverse is unique, suppose that g and h are both inverses to f. We must show that g = h. Let $b \in B$ be arbitrary. Then f(g(b)) = f(h(b)) = b because g and h both inverses, and since f is 1 - 1 we must have g(b) = h(b) for all b. By the proposition on equality of functions, we conclude that g = h.

In view of the preceding proposition, one way of showing that a function is a bijection is to show that it has an inverse.

The construction sending a bijective function to its inverse has several basic properties that are summarized in the next result.

Proposition (Identities involving inverse functions). The inverse function construction has the following properties:

- 1. Let A be a set. Then the identity map 1_A is a bijection, and it is equal to its own inverse.
- 2. Suppose that $f: A \to B$ and $g: B \to C$ are bijections so that their composite $g \circ f$ is also a bijection by a previous result. Then the function $(g \circ f)^{-1}$ is equal to $f^{-1} \circ g^{-1}$.
- 3. If $f: A \to B$ is a bijection with inverse f^{-1} , then $f^{-1}: A \to B$ is also a bijection, and its inverse is equal to f.

Proof. We shall derive all of these from the conditions $v \circ u = id_X$ and $u \circ v = id_Y$ which characterize a function $u: X \to Y$ and its inverse $v: Y \to X$. If $u = id_A$ then we also have $v = id_A$ because $id_A \circ id_A = id_A$, proving the first part. To prove the second part, we take X = A, Y = C, and $u = g \circ f$. If we now set v equal to $f^{-1} \circ g^{-1}$, then the proposition on the associativity property for compositions and the proposition on composites with identity maps combine to imply that the composites $v \circ u$ and $u \circ v$ are both identity maps. Finally, if we take X = B, Y = A, and $u = f^{-1}$, then v = f has the property that the composites $v \circ u$ and $u \circ v$ are both identity maps.

Example. Here is an illustration of the identity $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ using the 1 - 1and onto functions $f : \mathbb{R} \to (0, \infty)$ defined by $f(x) = e^x$ and $g : (0, \infty) \to (0, 1)$ defined by g(y) = y/(1+y) as examples: The composite function $g \circ f$ is given by

 $z = e^{x}/(1 + e^{x})$, and if we solve this for z we obtain the equation

$$x = \ln (z / (1 - z)).$$

Since $g^{-1}(z)$ is equal to the expression inside the parentheses and $\ln y = x$ is the inverse to $y = e^x$, this example does satisfy the formula for finding the inverse function of a composite.

<u>Comment (caution)</u>. If $f : \mathbb{R} \to \mathbb{R}$ is a 1 - 1 onto function given in terms of the functions studied in a first year calculus course, *there is no guarantee that its inverse function can also be expressed in such terms*. One relatively simple example is the Lambert W – function W(z) which is given by the identity

$$W(z) e^{W(z)} = z.$$

Additional details are given in the following subdirectory file:

http://math.ucr.edu/~res/math144-2022/week04/lambert-fcn.pdf