Functions and equivalence relations

Finally, here are some results related to Section 3.5 of Cunningham. We begin with the most basic relationship between the two concepts mentioned in the subheading.

<u>Equivalence class projection</u>. Let A be a set and let \mathcal{E} be an equivalence relation on A; as before, denote the set of equivalence classes for \mathcal{E} by the quotient A/\mathcal{E} . Then the <u>equivalence class projection</u> (or <u>quotient</u>) map $h_{\mathcal{E}}: A \to A/\mathcal{E}$ is the map which sends a \in A to its equivalence class [a] with respect to \mathcal{E} .

<u>Theorem (Passage to quotients)</u>. Let $f: A \to B$ be a function, let \mathcal{E} be an equivalence relation on A, let $h_{\mathcal{E}}: A \to A/\mathcal{E}$ be the quotient map for the equivalence relation as above, and assume that $a_1 \mathcal{E} a_2$ implies $f(a_1) = f(a_2)$ for all $a_1, a_2 \in A$. Then there is a unique function $f^*: A/\mathcal{E} \to B$ such that $f = f^* \circ h_{\mathcal{E}}$.

PROOF. We want to define f^* by the formula $f^*([x]) = f(x)$. What could go wrong? We need to exclude the possibility that there might be $x, y \in A$ such that [x] = [y] but $f(x) \neq f(y)$. In other words, we want to verify that [x] = [y] implies f(x) = f(y). But the latter follows from the assumption that $a_1 \& a_2$ implies $f(a_1) = f(a_2)$.

Two special cases of this result are particularly worth mentioning. The second one is also shown in Section 3.5 of Cunningham.

Corollary 1. Let $f: A \to B$ be a function, let \mathcal{E} and \mathcal{D} be equivalence relations on A and B respectively, let $h_{\mathcal{E}}: A \to A/\mathcal{E}$ and $h_{\mathcal{D}}: B \to B/\mathcal{D}$ be the quotient maps for the equivalence relations as above, and assume that $a_1 \mathcal{E} a_2$ implies $h_{\mathcal{D}} \circ f(a_1) = h_{\mathcal{D}} \circ f(a_2)$. Then there is a unique map $f^{**}: A/\mathcal{E} \to B/\mathcal{D}$ such that $h_{\mathcal{D}} \circ f = f^{*} \circ h_{\mathcal{E}}$.

This follows if we replace the map f in the theorem by the composite $h_{\mathcal{D}} \circ f$.

Corollary 2. Let $f: A \to B$ be a function, let \mathcal{E} be an equivalence relation on A, llet $h_{\mathcal{E}}: A \to A / \mathcal{E}$ be the quotient map for the equivalence relation as above, and assume that $a_1 \mathcal{E} a_2$ implies $f(a_1) \mathcal{E} f(a_2)$ for all $a_1, a_2 \in A$. Then there is a unique function $f^{**}: A / \mathcal{E} \to A / \mathcal{E}$ such that $h_{\mathcal{E}} \circ f = f^{**} \circ h_{\mathcal{E}}$.

This follows from the preceding corollary if we take A = B and $\mathfrak{D} = \mathfrak{E}.\blacksquare$