Functions and equivalence relations

Finally, here are some results related to Section 3.5 of Cunningham. We begin with the most basic relationship between the two concepts mentioned in the subheading.

Equivalence class projection. Let \boldsymbol{A} be a set and let \mathcal{E} be an equivalence relation on \boldsymbol{A}; as before, denote the set of equivalence classes for \mathcal{E} by the quotient $\boldsymbol{A} / \mathcal{E}$.. Then the equivalence class projection (or quotient) map $\boldsymbol{h}_{\boldsymbol{\varepsilon}}: \boldsymbol{A} \rightarrow \boldsymbol{A} / \mathcal{E}$ is the map which sends a in A to its equivalence class [a] with respect to \mathcal{E}.

Theorem (Passage to quotients). Let $\boldsymbol{f}: \boldsymbol{A} \rightarrow \boldsymbol{B}$ be a function, let \mathcal{E} be an equivalence relation on \boldsymbol{A}, let $\boldsymbol{h}_{\boldsymbol{\varepsilon}}: \boldsymbol{A} \rightarrow \boldsymbol{A} / \boldsymbol{\mathcal { E }}$ be the quotient map for the equivalence relation as above, and assume that $a_{1} \mathcal{E} a_{2}$ implies $f\left(a_{1}\right)=f\left(a_{2}\right)$ for all $a_{1}, a_{2} \in A$. Then there is a unique function $\boldsymbol{f}^{*}: \boldsymbol{A} / \mathcal{E} \rightarrow \boldsymbol{B}$ such that $f=f^{*} \circ \boldsymbol{h}_{\boldsymbol{\varepsilon}}$.

PROOF. We want to define f^{*} by the formula $f^{*}([x])=f(x)$. What could go wrong? We need to exclude the possibility that there might be $x, y \in A$ such that $[x]=[y]$ but $f(x) \neq f(y)$. In other words, we want to verify that $[x]=[y]$ implies $f(x)=f(y)$. But the latter follows from the assumption that $a_{1} \mathcal{E} a_{2}$ implies $f\left(a_{1}\right)=$ $f\left(a_{2}\right)$.

Two special cases of this result are particularly worth mentioning. The second one is also shown in Section 3.5 of Cunningham.

Corollary 1. Let $\boldsymbol{f}: \boldsymbol{A} \rightarrow \boldsymbol{B}$ be a function, let $\boldsymbol{\mathcal { E }}$ and \boldsymbol{D} be equivalence relations on \boldsymbol{A} and \boldsymbol{B} respectively, let $\boldsymbol{h}_{\mathcal{E}}: \boldsymbol{A} \rightarrow \boldsymbol{A} / \boldsymbol{\mathcal { E }}$ and $\boldsymbol{h}_{\mathcal{D}}: \boldsymbol{B} \rightarrow \boldsymbol{B} / \mathcal{D}$ be the quotient maps for the equivalence relations as above, and assume that $\boldsymbol{a}_{\mathbf{1}} \mathcal{E} \boldsymbol{a}_{\mathbf{2}}$ implies $\boldsymbol{h}_{\mathcal{D}^{\circ}} \boldsymbol{f}\left(\boldsymbol{a}_{1}\right)=$ $\boldsymbol{h}_{\mathcal{D}} \circ f\left(\boldsymbol{a}_{2}\right)$. Then there is a unique map $\boldsymbol{f}^{* *: \boldsymbol{A} / \mathcal{E} \rightarrow \boldsymbol{B} / \mathcal{D} \text { such that } \boldsymbol{h}_{\mathcal{D}} \circ \boldsymbol{f}=}$ $f^{*} \circ h_{\boldsymbol{\varepsilon}}$.

This follows if we replace the map \boldsymbol{f} in the theorem by the composite $\boldsymbol{h}_{\mathcal{D}}{ }^{\circ} \boldsymbol{f}$.■

Corollary 2. Let $\boldsymbol{f}: \boldsymbol{A} \rightarrow \boldsymbol{B}$ be a function, let $\boldsymbol{\mathcal { E }}$ be an equivalence relation on \boldsymbol{A}, llet $\boldsymbol{h}_{\mathcal{E}}: \boldsymbol{A} \rightarrow \boldsymbol{A} / \mathcal{E}$ be the quotient map for the equivalence relation as above, and assume that $a_{1} \mathcal{E} a_{2}$ implies $f\left(a_{1}\right) \mathcal{E} f\left(a_{2}\right)$ for all $a_{1}, a_{2} \in A$. Then there is a unique function $\boldsymbol{f}^{* *}: \boldsymbol{A} / \mathcal{E} \rightarrow \boldsymbol{A} / \mathcal{E}$ such that $\boldsymbol{h}_{\boldsymbol{\varepsilon}}{ }^{\circ} \boldsymbol{f}=\boldsymbol{f}^{* *} \circ \boldsymbol{h}_{\boldsymbol{\varepsilon}}$.
This follows from the preceding corollary if we take $\boldsymbol{A}=\boldsymbol{B}$ and $\boldsymbol{D}=\boldsymbol{\mathcal { E }}$.■

