
Math 144
Fall 2022

SOLUTIONS FOR WEEK 04 EXERCISES

Cunningham, Exercises 3.3

1. DIREGARD THIS ONE.

2. Let F : X → Y be the function with A ⊂ B ⊂ X, and suppose that y = F (x) for
some x ∈ A. Then x ∈ A implies x ∈ B, and therefore y = F (x) implies that y ∈ F [B].

7. Let x ∈ F−1[C], so that F (x) ∈ C. Since C ⊂ D we also have F (x) ∈ D. By
definition this means that x ∈ F−1[D].

8. Suppose that y ∈ C. Since F is onto there is some x such that F (x) = y, and by
definition of the inverse image we have x ∈ F−1[C]. Since F−1[C] ⊂ F−1[D], we also know
that x ∈ F−1[D], and it follows that y = f(x) ∈ D also holds. Therefore we have C ⊂ D.

11. By the definition of a function in the Cunningham, f ⊂ g should be interpreted as
“the graph of f is contained in the graph of g,” and similarly if f and g are interchanged.
Write a function in C as f : Af → Bf .

To show that
⋃

C is the graph of a function, we need to verify that if x is the first
coordinate of an element in C then there is exactly one ordered pair of the form (x, y) in⋃

C. By the assumption on x we know that at least one such point exists, so it suffices
to show that there cannot be two such points. But suppose that f and g have graphs Cf

and Cg with (x, y) ∈ Cf and (x, y′) ∈ Cg. One of these graphs contains the other; without
loss of generality we might as well assume Cf ⊂ Cg (for the other case, switch the roles
of f and g in the argument which follows). Then we know that (x, y) ∈ Cf ⊂ Cg. Since
(x, y′) ∈ Cg and Cg is also the graph of a function, we must have y = y′. Therefore to
every x ∈

⋃
f Af there is a unique y ∈

⋃
f Bf such that (x, y) ∈

⋃
C and hence the latter

is the graph of a function.

15. The condition G(X) = G(Y ) for X,Y ⊂ A translates to F [X] = F [Y ]. If x ∈ X,
then F (x) ∈ F [X] and F [X] = F [Y ] imply that F (x) = F (y) for some y ∈ Y . Since F
is 1–1 it follows that x = y and hence X ⊂ Y . If we switch the roles of X and Y in the
preceding two sentences we also conclude that Y ⊂ X; combining these, we have X = Y .

Cunningham, Exercises 3.5

1. We shall prove the contrapositive. If the equivalence relation F contains more than
one point, then the quotient mapping f : A → A/ ∼ is not 1–1. This is straightforward:
If u, v ∈ A satisfy u 6= v but [u] = [v], then f(u) = f(v), which means that f is not 1–1.

1



8. It is helpful to reformulate the problem more precisely. Let m = pr11 ...p
rx
x be a

factorization of m as a product of distinct primes, and let n = qs11 ...q
sy
y be a factorization

of n. Then m ∼ n if and only if
∑

ri =
∑

sj . By the unique factoriztion of a positive
integer as a product of prime numbers, we know that the sums of the exponents do not
depend upon the choice of factorization (note we are not assuming the primes are distinct).
Define σ(n) to be the sum of the exponents

∑
sj .

(a) YES. We need to verify that σ(m) = σ(n) implies that σ(3m) = σ(3n). But
this follows immediately from the fact that σ(3k) = σ(k) + 1.

(b) NO. In this case we need to determine whether [m] = [m′] and [n] = [n′] imply
[m + n] = [m′ + n′]. The quickest way to do this is by trial and error with examples
involving single digit integers. Let (m,n) = (5, 2) and (m′, n′) = (5, 3). Then σ(m) =
σ(n) = σ(m′) = σ(n′) = 1 but σ(5 + 2) = σ(7) = 1 and σ(5 + 3) = σ(8) = 3. Thus the
value of σ(m+ n) depends upon the choices of m and n and not only on their equivalence
classes. This means there cannot be a well-defined function h with the desired properties.

(c) YES. In this case we have σ(mn) = σ(m) + σ(n) because m = pr11 ...p
rx
x and

n = qs11 ...q
sy
y imply σ(m) =

∑
ri and σ(n) =

∑
sj , so that

mn = pr11 ...p
rx
x · q

s1
1 ...q

sy
y

and σ(mn) =
∑

ri +
∑

sj .

The remaining exercises in exercises04.pdf

1. (a) This is not a graph for two reasons. First, if |x| < 1 then
(
x,±
√

1− x2
)

satisfy
the equation. Second, if |x| > 1 then there are no real values of y such that (x, y) satisfies
the equation.

(b) This is a graph, for if x ∈ R, then the set consists of all ordered pairs of the form
(x, 1− x2).

(c) This is not a graph because there are no ordered pairs of the form (0, y) which
satisfy the equation. However, if we replace the first factor of the product by R−{0} then
the set IS the graph of the function y = 1/x.

(d) This is not a graph because there are infinitely many ordered pairs of the form
(0, y) which satisfy the equation; in fact, this is true for all ordered pairs of the form (0, y).
However, if we replace the first factor of the product by R−{0} then the set IS the graph
of the function y = 0.

2. Strictly speaking we should consider P1 ×P2 where P1 is all past presidents and P2

consists of all presidents; whatever hopes one has for the future, there is no way of defining
an ordered pair (current president, successor). The set is not a graph because it contains
the two ordered pairs (Cleveland, B. Harrison) and (Cleveland, McKinley).
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3. The set A × {x}, which corresponds to the constant function f(a) = x for all a,
clearly satisfies the conditions to be a graph. There cannot be any other functions, for if
we have g : A → {x} then the only possibility for g(a) is x. Therefore there is one and
only one function A→ {x}.

4. If f : ∅ → X is a function, the only possible choice for the graph G ⊂ ∅ ×X = ∅ is
the empty set, and the condition for this to be a graph is vacuously true because there is
no a such that a ∈ ∅.

If there were a function h : X → ∅ with X nonempty, then its graph G would be a
subset of X × ∅ = ∅. Since there is no way of finding y ∈ ∅, then there are no pairs of the
form (x, y) ∈ G ⊂ X×∅ = ∅. In particular, if a ∈ X there are no ordered pairs of the form
(a, y) ∈ G. Since there are no possible graphs, there cannot be any functions X → ∅.

5. The image is {0, 1, 2, 3, 4, 5, 6, 7, 8}. It might be easier to look at the function g(n)
consisting of all nonzero digits which do appear in the decimal expansion of n. There is
at least one nonzero digit, and hence the number which do not appear is at most equal to
8, and clearly there are values of n where this value is realized (take 10 to some positive
integral power). Given 2 ≤ k ≤ 9, consider the positive integer whose decimal expansion
is the first k positive integers, say taken in order. This yields a positive integer for which
9 − k of the digits do not appear. If k runs through the integers 2, ..., 9, then 9 − k runs
through the integers 0, ..., 7. Combining these observations we conclude that the image is
equal to {0, 1, 2, 3, 4, 5, 6, 7, 8}.

6. It will be convenient to use the following properties of a linear function like f defined
on a closed interval, which are often worked out in precalculus courses:

(1) The maximum and minimum values are given by the values of the function at the
endpoints.

(2) Every value y between the minimum and maximum is f(x) for some x in the
closed interval.

These imply that we can read off the answers once we know the maximum and minimum
values over the intervals in the problem.

(a) We need to solve the equations 3a − 7 = −7 and 3b − 7 = 2. The respective
solutions are a = 0 and b = 3, and therefore the inverse image is equal to [0, 3.

(b) We need to solve the equations y = f(x) = 3x − 7 when x = 2 and x = 6. Since
f(2) = −1 and f(6) = 11, the image is equal to [−1, 11].

7. (a) f [A] = {2, 3, 5}.

(b) If S = {1, 2, 3} then f [S] = {3, 5}.

(c) If S = {1, 2, 3} then f−1[S] = {1, 4, 5}.

8. If f(x) = 2x+ 1 and g(x) = x2 − 2, then

f og(x) = 2(x2 − 2) + 1 = 2x2 − 3
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and similarly
g of(x) = (2x+ 1)2 − 2 = 4x2 + 4x − 1.

9. We shall get the most insight into this problem by finding a formula for the inverse
function and seeing when it is not definable. In other words, we need to solve

y =
x− 2

x− 3

for y in terms of x and inspect the result.

If we multiply both sides by the denominator x− 3 we obtain

y(x− 3) = (x− 2) or equivalently yx− 3y = x− 2 .

The equation on the right is equivalent to xy − x = 3y − 2, which in turn is equivalent to

x =
3y − 2

y − 1

provided y 6= 1. So the inverse function is defined when y 6= 1, and if we replace x by
f−1(y) in the display we obtain a formula for f−1.

10. (b) Suppose that g of is 1–1. If f(x) = f(y) then

g of(x) = g (f(x)) = g (f(y)) = g of(y)

and since g of is 1–1 this implies x = y. Therefore f must also be 1–1.

(b) Suppose that g of is onto. If z ∈ C, then z = g of(x) = g (f(x)) for some x ∈ A.
Therefore if y = f(x), then z = g(y) and hence g is also onto.

11. Suppose we are given C,C ′ ⊂ A and D,D′ ⊂ B such that C ×D = C ′ ×D′. Then
C = πA[C×D] = πA[C ′×D′] = C ′ and D = πB [C×D] = πD[C ′×D′] = D′. This implies
that h is 1–1.

The image of h consists of “rectangular” open subsets which are products of subsets
of A with subsets of B; one property of such a subset Q is that (x, v), (u, y) ∈ Q implies
(x, y) ∈ Q. Clearly there are non-rectangular subsets for many (most) choices of A and B,
but we need an explicit example. If we take A = B = R then the set E defined by xy = 0,
which is the union of the x− and y− axes, is not in the image of h. In fact, the property
in the first sentence of this paragraph fails because (0, 1) ∈ E and (1, 0) ∈ E but (1, 1) is
not in E.

12. (a) YES. In fact, the map in this example is 1–1 onto. One quick way of seeing
this is to notice that the mapping ϕ in the problem is equal to its own inverse; in other
words, ϕ oϕ is the identity.

(b) NO. The mapping is not 1–1 because a and b are both sent to b, and it is not
onto because a does not lie in its image.
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13. (a) This map is 1–1 onto, and its inverse is given by solving y = −3x + 4 for x in
terms of y as follows:

y = −3x+ 4 ⇐⇒ y − 4

−3
= x

(b) This map is not 1–1 because f(1) = f(−1). It is also not onto because f(x) ≤ 7
(observe that −3x2 ≤ 0).

(c) This map is not defined if x = −2, so it cannot be a 1–1 and onto functions from
the set of real numbers to itself.

(d) This map is 1–1 onto, and its inverse is given by the unique real fifth root of
x5 − 1.

14. (a) We know that f [A ∩ B] ⊂ f [A] ∩ f [B] for an aritrary function, so we need
only show the reverse inclusion holds if f is 1–1. By definition, y ∈ f [A] ∩ f [B] implies
f(a) = y = f(b) for some a ∈ A and b ∈ B. If f is 1–1 then a = b. Since b ∈ B we must
also have a ∈ A ∩B, so that y = f(a) ∈ f [A ∩B].

Conversely, suppose that f [A ∩ B] = f [A] ∩ f [B] for all subsets A and B of X. Let
A = {a} and B = {b} where a, b ∈ X and a 6= b. Then we have

f [A ∩B] = f [∅] = ∅ = f [A] ∩ f [B]

and the latter translates to the statement f(a) 6= f(b). Since a and b were arbitrary, it
follows that f is 1–1.

(b) Suppose that f [X −A] ⊂ Y − f [A] for all subsets A of X. If X consists of a single
point, then it is automatically 1–1, so assume now that X contains elements a 6= b and
let A = {a}, so that b ∈ X − A. Then we have f(b) ∈ Y − f [A], and since f(a) ∈ f [A] it
follows that f(a) 6= f(b). Therefore f is 1–1.

Conversely, suppose that f is 1–1, and let A ⊂ X. If y ∈ f [X−A] then y cannot belong
to f [A], for y = f(x) for x ∈ X − A and y = f(a) for a ∈ A would imply f(a) = f(x),
contradicting our assumption that f is 1–1. Since f(x) 6∈ f [A], it follows that y = f(x)
must belong to Y − f [A], and since y was an arbitrary element of f [X −A] the latter set
must be contained in Y − f [A].

(c) Suppose that Y − f [A] ⊂ f [X − A] for all subsets A of X. If A = X then this
relation yields Y − f [A] ⊂ f [X − A] = ∅, which implies that Y = f [X]. Therefore f is
onto.

Conversely, suppose that f is 1–1, and let A ⊂ X be the empty set. Then f [A] = ∅
and therefore the inclusion relationship becomes Y ⊂ f [X]. Since the reverse implication
is immediate from the definition of f [X], we have Y = f [X] and hence f is onto.

16. We want to solve the equation y = x/(1 + |x|) for x in terms of y. This is a little
awkward because the absolute value of x is part of the given equation, and one way to deal
with this is to consider the cases x ≥ 0 and x < 0 separately.
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Suppose first that x ≥ 0, so that y = x/(1 + x) and the range of the function is
contained in the nonnegative real numbers. In this case the equation is equivalent to
y(1 + x) = x, which in turn is equivalent to y + yx = x or y = x(1− y), so that

x =
y

1− y
=

y

1− |y|

where the last equation holds because y ≥ 0 when x ≥ 0.

Suppose now that x ≤ 0 so that y = x/(1−x) and the range of the function is contained
in the nonpositive real numbers. In this case the equation is equivalent to y(1 − x) = x,
which in turn is equivalent to y − yx = x or y = x(1 + y), so that

x =
y

1 + y
=

y

1− |y|

where the last equation holds because y ≤ 0 when x eq0. Observe that we obtained the
same formula for x regardless of whether y ≥ 0 or y ≤ 0.

17. Given h : C → A × B, let f = πA oh and g = πB oh. It then follows that
h(x) = ( f(x), g(x) ). Conversely, if h is given by the preceding formula, then it satisfies
f = πA oh and g = πB oh. Therefore the consruction sending h to (g, f) is onto. Conversely,
if we start with (f, g) and form h, then its coordinate projections are f and g; therefore if
(f, g) and (f ′, g′) yield the same function h, then f = f ′ and g = g′.

18. We need to show that TB,A
oTA,B is the identity on A × B and TA,B

oTB,A is the
identity on B ×A:

TB,A
oTA,B(x, y) = TB,A(y, x) − (x, y)

TA,B
oTB,A(y, x) = TA,B(x, y) − (y, x)

These chains of equations imply that the two functions in questions are inverse to each
other.

19. (a) We shall first prove that πB oj is 1–1 onto. In fact, this composite is the identity
map on B because πB oj(b) = πB(a, b) = b. To see that j is 1–1, note that j(b) = j(b′)
implies that b = πB oj(b) = πB oj(b′) = b′.

(b) First observe that ϕ(x, y) = j oπB(x, y) = j(y) = (a, y). This means that
ϕ oϕ(x, y) = ϕ(a, y) = (a, y), which yields the identity ϕ oϕ = ϕ.

20. Let Q : A×B → B be coordinate projection, and let J : A→ A×B send a ∈ A to
(a, f(a)). If x ∈ A, then Q oJ(a) = Q (a, f(a)) = f(a), so f = Q oJ . The map Q is onto
because it is a coordinate projection and both A and B are nonempty. The map J is 1–1
because J(a) = J(a′) implies a = πA (a, f(a)) = πA (a′, f(a′)) = a′.
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