SOLVED PROBLEMS FOR WEEK 04

1. Let A, B and Y be sets, let $X=A \cup B$, and let $f: A \rightarrow Y$ and $g: B \rightarrow Y$ be functions such that $f|(A \cap B)=g|(A \cap B)$. Prove that there is a unique function $h: X \rightarrow Y$ such that $h \mid A=f$ and $h \mid B=g$.

SOLUTION.

Let $\Gamma(f)$ and $\Gamma(g)$ be the graphs of f and g respectively, and let $\Gamma(h)=\Gamma(f) \cup \Gamma(g)$. Suppose that $x \in A \cup B$. If $x \in A-B$ then $(x, f(x))$ is the unique element of $\Gamma(h)$ whose first coordinate is x, and likewise if $x \in B-A$. By construction the first coordinate of an element in $\Gamma(h)$ lies in $X=A \cup B$; we only need to examine what happens if $x \in A \cap B$. In this case we know that if $(x, f(x)) \in \Gamma(h)$ and $(x, g(x)) \in \Gamma(h)$, and if $(x, y) \in \Gamma(h)$ it must be one of these ordered pairs. By assumption $x \in A \cap B$ implies that $f(x)=g(x)$, so if $x \in A \cap B$ we again conclude that there is exactly one ordered pair in $\Gamma(h)$ whose first coordinate is x. This completes the proof that $\Gamma(h)$ is the graph of a function from X to Y. This function is unique, for if k is another such function and $x \in X$ then $x \in A \cup B$, and we have $h(x)=f(x)=k(x)$ if $x \in A$ and $h(x)=f(x)=k(x)$ if $x \in B$. Since the functions have the same values at every element of X we have $h=k . \boldsymbol{m}$
2. Let $f: A \rightarrow B$ be a function. Explain why $f^{-1}[B-f[A]]$ is the empty set.

SOLUTION.
If $x \in f^{-1}[B-f[A]]$ then $f(x) \in B-f[A]$. On the other hand, by definition we know that $f(x)$ must belong to $f[A]$, which yields a contradiction. The source of the contradiction is assuming that the inverse image is nonempty, so this assumption must be false and hence the inverse image must be empty.
3. (a) Suppose A is a set and $E \subset C \subset A$. Prove that the associated inclusion maps satisfy the following identity:

$$
i_{E \subset A}=i_{C \subset A}{ }^{\circ} i_{E \subset C}
$$

(b) In the setting above, let $f: A \rightarrow B$ be a function. Prove that the restriction mappings satisfy the identity $(f \mid C)|E=f| E$.

SOLUTION.

(a) Let $x \in E$. Then by the definition of inclusion mappings we have

$$
i_{C \subset A}{ }^{\circ} i_{E \subset C}(x)=i_{C \subset A}\left(i_{E \subset C}(x)\right)=i_{C \subset A}(x)=x
$$

and similarly $i_{E \subset A}(x)=x$. Since both functions have the same value at each $x x \in E$, they are equal.
(b) By definition $f \mid E=f{ }^{\circ} i_{E \subset A}$. If we now apply the first part and use associativity of composition we may rewrite the right hand side as

$$
f^{\circ}\left(i_{C \subset A}{ }^{\circ} i_{E \subset C}\right)=\left(f^{\circ} i_{C \subset A}\right)^{\circ} i_{E \subset C}=(f \mid C)^{\circ} i_{E \subset C}=(f \mid C) \mid E
$$

which is what we wanted to prove. -
4. Let

$$
f(x)=\frac{2 x-3}{5 x-7} \quad\left(x \neq \frac{7}{5}\right)
$$

It turns out that f defines a $1-1$ onto mapping from $\mathbb{R}-\left\{\frac{7}{5}\right\}$ to $\mathbb{R}-\left\{\frac{2}{5}\right\}$. Find an explicit formula for f^{-1}.

SOLUTION.

We need to solve the equation

$$
y=\frac{2 x-3}{5 x-7} \quad\left(x \neq \frac{7}{5}\right)
$$

for x in terms of y. If we begin by multiplying both sides by the denominator $5 x-7$ we obtain $y(5 x-7)=2 x-3$. Rearranging terms we obtain the equation $5 x y-2 x=7 y-3$, or equivalently $x(5 y-2)=7 y-3$. The latter yields the desired formula for the inverse function:

$$
x=\frac{7 y-3}{5 y-2} \quad\left(y \neq \frac{2}{5}\right)
$$

5. Suppose we have a function $f: A \rightarrow B$ and two factorizations of f as $j_{0}{ }^{\circ} q_{0}$ and $j_{1}{ }^{\circ} q_{1}$ where the maps q_{t} are onto and the maps j_{t} are $1-1$ for $t=0,1$. Denote the codomain of q_{t} (equivalently, the domain of j_{t}) by C_{t}. Then there is a unique bijection $H: C_{0} \rightarrow C_{1}$ such that $H{ }^{\circ} q_{0}=q_{1}$ and $j_{1}{ }^{\circ} H=j_{0}$.

SOLUTION.

Given $y \in C_{0}$ we would like to define H by choosing $x \in A$ so that $q_{0}(x)=y$ [such an x exists because q_{0} is onto] and setting $H(y)=q_{1}(x)$.

In order to make such a definition it is necessary to show that the construction does not depend upon the choice of x; in other words, if $q_{0}(z)=q_{0}(x)=y$, then $q_{1}(x)=q_{1}(z)$. All we have at our disposal are the injectivity and surjectivity assumptions along with the identities $f=j_{0}{ }^{\circ} q_{0}=j_{1}{ }^{\circ} q_{1}$. Since j_{1} is injective, if we can show that $j_{1}{ }^{\circ} q_{1}(z)=j_{0}{ }^{\circ} q_{0}(x)$, then we will have $q_{1}(z)=q_{1}(x)$ as desired. But

$$
j_{1}{ }^{\circ} q_{1}(z)=f(z)=j_{0}{ }^{\circ} q_{0}(z)=j_{0}(y)=j_{0}{ }^{\circ} q_{0}(x)=f(x)=j_{1}{ }^{\circ} q_{1}(x)
$$

so we do have the necessary identity $q_{1}(z)=q_{1}(x)$. Therefore we have defined a mapping $H: C_{0} \rightarrow C_{1}$ such that $H{ }^{\circ} q_{0}=q_{1}$.

We now need to show that H is bijective. Suppose that $H(y)=H\left(y^{\prime}\right)$ and choose x, x^{\prime} so that $y=q_{0}(x)$ and $y^{\prime}=q_{0}\left(x^{\prime}\right)$. We then have

$$
\begin{gathered}
j_{0}(y)=j_{0}{ }^{\circ} q_{0}(x)=f(x)=j_{1}{ }^{\circ} q_{1}(x)=j_{1} H(y) \\
j_{0}\left(y^{\prime}\right)=j_{0}{ }^{\circ} q_{0}\left(x^{\prime}\right)=f\left(x^{\prime}\right)=j_{1}{ }^{\circ} q_{1}\left(x^{\prime}\right)=j_{1} H\left(y^{\prime}\right)
\end{gathered}
$$

and since $H(y)=H\left(y^{\prime}\right)$ it follows that the expressions on both lines are equal, so that $j_{0}(y)=j_{0}\left(y^{\prime}\right)$. Since j_{0} is injective, this implies $y=y^{\prime}$ and hence H is injective. To show that H is surjective, express a typical element $z \in C_{1}$ as $q_{1}(x)$ for some x; then if $y=q_{0}(x)$ we have $z=H(y)$. This completes the proof that H is bijective.

All that remains is to show that H is unique. Suppose that $K: C_{0} \rightarrow C_{1}$ also satisfies $K^{\circ} q_{0}=q_{1}$. Then if $y \in C_{0}$ and $y=q_{0}(x)$ we have

$$
K(y)=K^{\circ} q_{0}(x)=q_{1}(x)=H^{\circ} q_{0}(x)=H(y)
$$

and hence $K=H$, proving uniqueness.■

