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L10 
 

Finite and infinite sets 
 

One major reason for the development of set theory is to deal with issues involving 

infinite sets.  Whenever one talks about infinite objects, some apparent paradoxes arise 

almost immediately, and it is necessary to make sure that these do not lead to serious 

problems with the reliability of mathematical material.   This is particularly true when one 

discusses the standard number systems, all of which are infinite.   For example, the 
introduction of zero and negative numbers quickly leads to questions about the logical 

soundness of this concept, and their use was not fully accepted until the late 17th 

century, about 1000 years after the ideas were first formulated.  Similarly, the basic idea 
of expressing real numbers using infinite decimal expansions began to develop some 

time in the 11th or 12th century, and by the end of the 16th century it had become fairly 

widely accepted, but some form of infinite set theory was needed to make everything 

logically rigorous and the latter was not completed until later in the 19th century.   
Especially for the real numbers, there was the following key question:  Even though 
infinite decimals are relatively easy to understand and have turned out to be highly 

reliable for practical purposes, are there some hidden flaws which can lead to incorrect 

or even absurd conclusions?   
 

The answer is mixed.  Monumental work of K. Gödel, beginning around 1930, showed 
that one can never be totally sure that a theory of infinite sets is logically consistent.  

This may seem very discouraging, but there are two important facts which are 

considerably more positive: 
 

1. Further results of Gödel and work of G. Peano show that if there is a problem 

with axioms for a workable theory of infinite sets (which contains the natural 

numbers NNNN), then there is a problem with a very short list of axioms which 

characterize NNNN.  Furthermore, a workable theory containing an object like NNNN will 

always contain other standard number systems, including the real numbers (this 

is due to R. Dedekind and G. Cantor). 
 

2. Mathematics has made dramatic advances on many fronts since 1930, but none 
of this work on “genuine” mathematical problems has indicated that there are 

any inconsistencies.  Statements like this are of course subject to future 

discoveries; there are some speculations about where difficulties may be found, 
but no such problems have surfaced to date. 
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For our purposes, one of the crucial properties of NNNN is given by the following  Well – 

Ordering Property:  Every nonempty subset of NNNN has a least element. 
 

Here is a simple plausibility argument for understanding this property:  Suppose that  A  

is a nonempty subset, and let  n  ∈∈∈∈  A.  Since  A  has no least element, there must be 

some   x1  ∈∈∈∈  A  so that  x1  <  n.   Similarly, there must be an  x2  ∈∈∈∈  A  so that  x2  < 

x1,  and so forth until we have a sequence of elements in  A  of the form  
 

xn+1  <  xn  <  … < x1  <  n.    
 

It follows that  xk  ≤≤≤≤  n – k for all  k,  and therefore we also have  xn+1  ≤≤≤≤  – 1.   Since 

– 1 does not belong to NNNN,  we have a contradiction.  The source of the contradiction is 

our assumption that A has no least element, and therefore this must be false, meaning 

that  A  indeed has a minimal element. 

 
Finite sets 

 
Before going into detail about infinite sets, it is instructive to look at some properties of 

finite sets.  The first issue is to define this concept formally. 
 

Definition.   A set A is finite if there is a 1 – 1 mapping  f : A →→→→ { 1, … , n } for some  

n  ∈∈∈∈  NNNN+ (the positive integers).   
 

Given a finite set  A, consider the nonempty family  FFFF  of all 1 – 1 mappings  f : A →→→→  

{ 1, … , k }  where  k ∈∈∈∈ NNNN+.   The set of all  k  which can be realized in this way is 

nonempty, and if k  can be realized then so can k + 1; we need only compose  f  with 

the inclusion of { 1, … , k } in { 1, … , k, k + 1 }.  In any case, there is a least value k0   

which can be realized.  We shall say that  k0  is the cardinality or cardinal number of 

X  and write  |X|  =  k0.  
 

Proposition.  If B is a proper subset of the finite set  A,  then |B|  <  |A|. 
 

Corollary.  There are no 1 – 1 onto maps from  A  to a proper subset of itself. 
 

PROOF OF THE PROPOSITION.   If there were such a 1 – 1 correspondence then we 

would have  A <-> B with |B|  <   k0 , so that  |A| ≤≤≤≤  k0 – 1.  Since  k0  is the least 

value of n  such that there is a 1 – 1 mapping from  A  to { 1, … , n }, we have a 

contradiction.  Therefore no such 1 – 1 map from  A  to  B  can exist. 
 

Proposition.   If  |A| =  n and  f : A →→→→ { 1, … , n } is 1 – 1,  then  f  is onto.   
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PROOF.  Suppose that  f  is not onto and  j ∉∉∉∉  f [A].  Define a new 1 – 1 function  g  

as follows:  g(a)  =  f (a)  if  g(a)  <  j,  and g(a)  =  f (a) – 1  if  g(a)  >  j.  This is still 

a 1 – 1 function, but its codomain is { 1, … , n – 1 } and hence |A| ≤≤≤≤  n – 1, which 

contradicts our assumption.  The source of the contradiction is our assumption that  f  is 

not onto, so that must be false and hence  f  must be onto. 
 
We can express all this in a unified form as follows: 
 

Theorem.   Let A and B be finite sets with |A| = |B| =  n.  Then a 1 – 1 function from 

A to  B  is onto, and an onto function from  A  to B  is  1 – 1. 
   

PROOF.    The first conclusion is given by the immediately preceding result, and the 

second may be proved as follows:  If  f  were not onto, then  f [A] would be a proper 

subset of B  and  f  would define a 1 – 1 correspondence from A to the proper subset  

f [A] ⊂⊂⊂⊂ B.  This leads to the chain of equalities and inequalities |B| =  |A| = | f [A]|  

<  |B|.  The resulting inequality |B| <  |B| yields a contradiction, which arises from 

the assumption that  f  was not onto.  It follows that  f  is onto. 

 
Counting elements in finite sets 

 
There are a few important principles for counting elements in a standard construction on 

finite sets.  
 

Theorem.   Let A and B be finite sets. 
 

(a)  The cardinalities of A, B, A  ∪∪∪∪  B  and A  ∩∩∩∩  B satisfy the formula   |A  ∪∪∪∪  B | =  

|A| + |B| –  |A  ∩∩∩∩  B|. 
 

(b) The cardinality of the Cartesian product  A ×××× B  is equal to |A|⋅⋅⋅⋅|B|. 
 

(c) If A and B are nonempty, then the cardinality of the set of functions F(A, B) is 

equal to |B|
|

 
A

 
|
. 

 

The third formula explains the reason for Cunningham’s use of  
A

 B to denote F(A, B). 
 

PROOF.  (a) Consider the sequence of length  m + n  elements  a1, … , an , b1, … , 

bm . The only repetitions in this sequence occur when there are j and k such that  aj = 

bk  and there is one such repetition for every element of  A  ∩∩∩∩  B.  If we eliminate these 

duplications we obtain a sequence in which every element of  A  ∪∪∪∪  B occurs exactly 

once, and the number of terms in this sequence, which is |A  ∪∪∪∪  B |, is also given by    

|A| + |B| –  |A  ∩∩∩∩  B|. 
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Before proceeding, we note one consequence of this:  If C1, … , Cn are pairwise 

disjoint sets and C is their union, then | C | = | C1 | + … + | Cn |.    This can be proved 

recursively:  By the preceding paragraph we have | C1 ∪∪∪∪ C2| = | C1 | + | C2 |.  The 

distributive law for sets implies that  C1 ∪∪∪∪ C2  and C3 are disjoint and therefore we have  

| C1 ∪∪∪∪ C2 ∪∪∪∪ C3| = | C1 ∪∪∪∪ C2| + | C3 | = | C1 | + | C2 |+ | C3 |, and similarly for unions of 
4 or more subsets satisfying the given condition.   
 

(b)  For each  a  ∈∈∈∈  A  there is a 1 – 1 onto map f a: B  →→→→  { a } ×××× B  given by f a (b) = 

(a, b); the inverse mapping sends (a, b) back to b.  The sets  f a [B] are a pairwise 

disjoint family of subsets whose union is all of A ×××× B, so by the preceding paragraph we 

know that | A ×××× B | = | B | + … + | B | (there are | A | summands, one for each element 

of A).  The formula follows because the right hand side Is merely |A|⋅⋅⋅⋅|B|. 
 

(c)  We shall use the following product principle for counting:  Suppose we are given n 

choices C1, … , Cn such that the number mk of alternatives at each step k does not 

depend upon the previous choices.  Then the total number of choices is equal to the 

product  m1 ⋅⋅⋅⋅ … ⋅⋅⋅⋅ mn.   
 

In our situation we want to look at the number of ways to define a function f:A\to B.  

Write the elements of  A  as a1, … , am .  For each j there are exactly |B| ways to 

define f (aj), one for each element of B.  Therefore the total number of ways for defining 

a function is equal to | B | ⋅⋅⋅⋅ … ⋅⋅⋅⋅ | B |  (there are |A| factors, one for each element of 

A).  By the definition of positive integer exponents, this number is equal to |B|
|

 
A

 
|
. 

 

Here are two more counting rules that are very useful. 
 

Proposition (Counting subsets of a set).  If  A  is a finite set and |A| =  n, then the 

set of all subsets PPPP (A) is also finite and |PPPP (A) |  =  2 

|
 
A

 
|
. 

 

PROOF.   The main idea is to find a 1 – 1 correspondence from PPPP (A) to the set of all 

functions from A to { 0, 1 } and then to apply the formula in (c) from the previous; this 

construction also works for infinite sets. 
 

Given B  ⊂⊂⊂⊂  A, define its characteristic function  χχχχ B: A →→→→ { 0, 1 } by  χχχχ B (a) =  1 if  

a  ∈∈∈∈  B  and by  χχχχ B (a) =  0  if  a  ∉∉∉∉  B.  By construction the inverse image of { 1 } is 

equal to B, and therefore χχχχ B  =  χχχχ C  implies  B =  C.  Therefore the characteristic 

function map  PPPP (A) →→→→ F(A, { 0, 1 })  is 1 – 1.  But this mapping is also onto, for if  f  

is any function from A to { 0, 1 }  then  f  =  χχχχ B  where B  is the inverse image of { 1 }.   

Finally, apply formula (c) to conclude that |PPPP (A) |  =  2 

|
 
A

 
|
. 
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Proposition (Pigeonhole Principle).  Suppose that  A  and  B  are finite sets such that 

|A|  >  |B| and  f : A →→→→ B is a function.  Then  f  is not 1 – 1; in other words, there 

exist distinct elements  x, y  ∈∈∈∈  A  such that  f (x) =  f ( y). 
 

PROOF.  We shall prove the contrapositive:  If no such pair x, y  ∈∈∈∈  A exists then we 

must have | f [A]|  ≤≤≤≤  |B|.    If no such pair exists, then   f  is 1 – 1.  If we now let   

g : B →→→→ { 1, … , n } be  1 – 1 and onto function, then g\tinycirc f is also 1 – 1, which 

implies |A|  ≤≤≤≤   n =  |B|. 

 
Countable sets 

 
The Pigeonhole Principle implies that the set  NNNN  of nonnegatie integers is not a finite 

set; in fact, for each  n  we know that a function { 1, … , n + 1 } to { 1, … , n } is never 

1 – 1.  We shall eventually show that in some sense NNNN is the smallest set which is not 

finite.  This will be part of a more general theory of cardinal numbers for infinite sets.  
Our development of this material will use the following axiom for set theory (see also 

Subsection 3.3.4 of Cunningham): 
 

AXIOM OF CHOICE.  Let A be a nonempty set and let  PPPP+ (A)  denote the set of 

nonempty subsets of  A.  Then there is a  choice function   c : PPPP+ (A) →→→→ A  such that 

c(B) ∈∈∈∈  B  for all nonempty subsets  B  ⊂⊂⊂⊂ A.   
 

In other words, given a family of nonempty subsets, one can choose a representative 

element for each one in a coherent manner.  Initially some mathematicians questioned 
the appropriateness of including such an axiom because it is a pure statement about 

existence, giving no specific method for finding such a choice function.  However, it is 

now generally accepted, although sometimes reluctantly.   One major reason for its 
general acceptance is a theorem of Gödel which states that if there is a logical 

inconsistency in set theory with the axiom of choice, then there is already a logical 
inconsistency if one does not assume it.  Later work of P. Cohen showed that there are 

models for the Zermelo – Fraenkel axioms of set theory (as stated in Chapter 1 of 
Cunningham) for  which the Axiom of Choice is true and other models for which it is 
false.   Since the axiom yields many interesting and important mathematical objects 
which could not be considered otherwise and by itself leads to no further logical 
uncertainties, most mathematicians now have few if any problems with it. 
 

The following result illustrates the use of this axiom in mathematics.  
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Proposition (Cross Section Property).  Let  f : A →→→→ B  be a function which is onto.  

Then there is a 1 – 1 function  σσσσ : B →→→→ A (a cross section) such that  f      
oooo σσσσ  (b) = b  

for all  b  ∈∈∈∈  B.  
 

PROOF.   We shall use the Axiom of Choice to construct a function σσσσ : B →→→→ A such that 

σσσσ  (b) ∈∈∈∈  f  
–

 
1
[{b} ]  for each  b  ∈∈∈∈  B.    Note that each level subset   f  

–
 
1
[{b} ] is 

nonempty since  f  is onto.  By construction we have f (σσσσ  (b)) = b.  Finally, we need to 

verify that  σσσσ      is 1 – 1.   This follows because  σσσσ  (b) = σσσσ  (b′′′′)  implies   b  = f (σσσσ  (b)) = 

f (σσσσ  (b′′′′)) = b′′′′. 
 
 

This discussion will be continued in the next lecture. 
 
 
  


