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L09 
 

Partial and linear orderings 
 

In many areas of mathematics it is important to compare two objects of the same type 
and determine whether one is less than or equal to the other.  The real number system 
is one obvious example of this sort, but it is not the only one.  When we consider the 
family of all subsets of a given set, it is often important to know if one subset is 
contained in another.  In both cases the associated ordering by size can be expressed 
in terms of a binary relation OOOO, and if  OOOO is one of these examples it has the following 
three properties:  
 

OOOO is reflexive:  a  OOOO a  for all  a  ∈∈∈∈  A.  
   

OOOO is antisymmetric:   a  OOOO b  and  b  OOOO a  imply  a  =  b   for all a, b  ∈∈∈∈  A.      
 

OOOO is transitive:   a  OOOO b  and  b  OOOO c  imply  a  OOOO c  for all  a, b, c  ∈∈∈∈  A. 
 

These examples and properties lead to a general concept. 
 

Definition.  If A is a set, then a partial ordering on  A  is a binary relation  OOOO  on A 
which is reflexive, antisymmetric and transitive.  A partially ordered set (or poset) is 

an ordered pair (A, OOOO) consisting of a set  A  together with a partial ordering  OOOO  on A. 
If the partial ordering  OOOO  is clear or unambiguous from the context, we shall often write 

x  OOOO y  in a more familiar form like  x  ≤≤≤≤  y  or  y  ≥≥≥≥  x .  Similarly, if x  ≤≤≤≤  y  or  y  ≥≥≥≥  x  

but  x  ≠≠≠≠  y  then we often write  x  <  y  or y  <  x  and say either that  x  is strictly 

less than  y or equivalently that y  is strictly greater than  x.   
 

ALGEBRAIC EXAMPLE 1.   Let A  be the positive integers and let  OOOO  be the binary 

relation  x  OOOO y  if and only if  y  is evenly divisible by  x  (with no remainder; in other 

words,  y  =  x z  for some positive integer z).  This relation is reflexive because  x  =  

x  ⋅ 1.   To see the relation is antisymmetric,  suppose that  y  =  x z  and  x  =  y w.  

Combining these, we obtain the equation x  =  x z w,  where x, z and w are all positive 

integers.  The only way one can have an equation of this sort over the positive integers 

is if  z  =  w  =  1.   To see that the relation is transitive, suppose we have  y  =  x u  

and  z  =  y v .  Combining these, we see that  z  =  y u v , where both  u and  v  are 

positive integers.  This implies that x OOOO z. 
 

ALGEBRAIC EXAMPLE 2.     Take A to be the chessboard (checkerboard?) set 
 

A  =  { 1, 2, 3, 4, 5, 6, 7, 8 }  ××××  { 1, 2, 3, 4, 5, 6, 7, 8 } 
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and start with the standard ordering on the first eight positive integers.   One then has 

the so – called lexicographic or dictionary ordering on A with  ( x , y)  ≤≤≤≤  ( x′′′′, y′′′′)  if 

and only if either  (i)  x  <   x′′′′,  or else (ii)  x  =  x′′′′ and y  ≤≤≤≤   y′′′′.   We shall show this is 

a partial ordering by proving a more general statement. 
 

Proposition (Lexicographic ordering on a product).  Suppose that  P and  Q are 

partially ordered sets (with orderings denoted by ≤≤≤≤ P and ≤≤≤≤ Q ), and define a new binary 

relation  ≤≤≤≤   (the lexicographic or dictionary ordering) on the product  P ×××× Q  by   

( x , y)  ≤≤≤≤  ( x′′′′, y′′′′)  if and only if either  (i)  x  <   x′′′′,  or else (ii)  x  =  x′′′′ and y  ≤≤≤≤   y′′′′.   

Then the relation  ≤≤≤≤  defines a partial ordering on  P ×××× Q .  
 

PROOF.  We being by showing the binary relation is reflexive.  By Condition (ii) we 

have ( x , y)  ≤≤≤≤   ( x , y).    
 

Suppose now that we have both  ( x , y)  ≤≤≤≤  ( x′′′′, y′′′′) and ( x′′′′, y′′′′) ≤≤≤≤    ( x , y).  Then (i)  

and (ii) combine to show that  x  ≤≤≤≤ P  x′′′′ and  x′′′′  ≤≤≤≤ P  x; therefore we must have  x  =  

x′′′′ .  We can now apply  (ii) to conclude that y  ≤≤≤≤ Q  y′′′′ and  y′′′′  ≤≤≤≤ Q  y, so that  y  =  y′′′′ .  
Thus both coordinates of  ( x , y)  and  ( x′′′′, y′′′′)  are equal, and consequently the two 

ordered pairs are equal.   
 

Finally, suppose that we have  ( x , y)  ≤≤≤≤    (z , w)   and also  (z , w)  ≤≤≤≤   ( u , v).   The 

remaining argument splits into cases; as noted before, by definition of the lexicographic 

relation, if two ordered pairs ( a , b)  and ( c , d ) are related then a  ≤≤≤≤  c.    Case 1:  

Suppose we have either  x  < P  z   or  z  < P  u.  In either case we have x  < P  u  and 

therefore by Condition (1) we have   ( x , y)  ≤≤≤≤   ( u , v).     Case 2:  Suppose that  x  =  

z   =   u.     In this case Condition (2) implies  y  ≤≤≤≤ Q  w  and  w  ≤≤≤≤ Q  v, so by transitivity 

of  ≤≤≤≤   it follows that  y  ≤≤≤≤ Q  v.    Combining the statements in the last two sentences, 

we conclude that ( x , y)  ≤≤≤≤   ( u , v).   This completes the proof of transitivity.  

 
Linear orderings 

 
One major difference between the ordering of the real numbers and the ordering of a 
set of subsets is that real numbers satisfy the following trichotomy principle: 
 

For every  x  and  y,  exactly one of   x  =  y,  x  <  y  or  y  <  x  is true. 
 

It is easy to construct examples showing this fails for nearly every set of subsets PPPP (A).  

Specifically, if  A  =  { 1, 2 }  with x  =  { 1 }  and  y  =  { 2 }, then  x  and  y  are distinct 
but neither is a subset of the other.  
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We can formalize this concept using another definition. 
 

Definition.  Let  (A, OOOO)  be a partially ordered set.  Then      OOOO  is said to be a linear 

ordering, a simple ordering or a total ordering if for every pair of elements x  and  y 

in  A,  we either have x  OOOO y  or  y  OOOO x.  —   Since a partial ordering is antisymmetric, 
both conditions hold if and only if  x  =  y.   
 
Here are two simple but useful results on ordered sets. 
 

Proposition (Restrictions of orderings to subsets).  Let  (A, OOOO)  be a partially 

ordered set, let B be a subset of  A, and define OOOO | B be the restricted binary relation on 

B defined by OOOO ∩∩∩∩ (B ×××× B ) .  Then  OOOO | B  is a partial ordering on  B.  Furthermore, if  OOOO 

is a linear ordering then so is OOOO | B. 
  

The key observation in the proof is that if  x  and  y  belong to B, then  x   OOOO | B   y  if and 

only if  x  OOOO  y.  Details of the argument are left to the reader as an exercise. 

  

Proposition (Lexicographic orderings associated to linear orderings).  If  A and B 

are linearly ordered sets, then the product A ×××× B with the lexicographic ordering is also 

linearly ordered.  
 

PROOF.    Suppose we are given ( x , y)  and  ( x′′′′, y′′′′).   Since A is linearly ordered, 

exactly one of the statements  x  <A  x′′′′,  x  =  x′′′′  or x  > A  x′′′′  is true. In the first and 

third cases we have  ( x , y)  <  ( x′′′′, y′′′′)  and ( x , y)  >  ( x′′′′, y′′′′) respectively. 
 

Suppose now that x  =  x′′′′;  since B is linearly ordered,  exactly one of  y  <B  y′′′′,  y  =  

y′′′′  or y  > B  y′′′′  is true.  In these respective cases we have ( x , y)  <  ( x′′′′, y′′′′),  ( x , y)  =  

( x′′′′, y′′′′)  and ( x , y)  >  ( x′′′′, y′′′′).    

 

Partially ordered sets arise in many different mathematical contexts, and this wide 
range of contexts generates a long list of properties that a partially ordered set may or 

may not satisfy.  We shall discuss a few of these together with some examples for 

which the properties are true and others for which the properties are false. 
 
The following type of partially (in fact, linearly) ordered set plays an important role in the 
mathematical sciences. 
 

Definition.  A partially ordered set  A  is said to be well – ordered if every nonempty 

subset has a minimal element a* such that a*  ≤≤≤≤  x  for all  x ∈∈∈∈ A. 
 

Algebraic Examples.  If  A denotes the nonnegative integers and one takes the usual 

ordering, then  A is well – ordered. This property is crucial to a powerful method of 
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proof known as finite induction.  On the other hand, the sets of all integers and all 

positive real numbers are not well – ordered, and in fact these sets themselves have 

no minimal elements.   Given an integer  n  we know that  n – 1  <  n, and given a 

positive real number  x  we know that   0  <  x/2  <  x. 
 

Proposition.  Every well – ordered set is linearly ordered.  
 

PROOF.    Let  A be the well – ordered set, and let  B  be a nonempty subset of  A.  If 

B does not have at least two elements then there is nothing to prove, so assume that  B  

does have at least two elements.  Suppose that  x  and  y  are distinct elements of B, 

and consider the nonempty subset { x , y }.    By the well – ordering assumption we 

know this set has a least element.  If it is x ,  then we have x  <  y,  and if it is  y  then 

we have  y  <  x.   

 
Extending partial orderings 

 
There is an important relationship between the divisibility ordering and the usual 

ordering of the positive integers; namely, if  m |  n then m  ≤≤≤≤  n.  There are many 

situations in which one wants an answer to the following more general question: 
 

Extension Question.  Given a partial ordering  OOOO  on a set  X, is there always a linear 

ordering  LLLL  on  X  such that  u  OOOO  v  implies  u  LLLL  v? 
 

Such questions also arise in nonmathematical contexts.  For example, one may have a 

list of courses that are required for a degree, with each course having its own 

prerequisites.  We shall consider such an example in an appendix to this lecture. 
 

The answer to the Extension Question turns out to be yes.  We do not yet have the tools 
to prove this in complete generality, but we can give a method proof in the finite case 
which can be applied to specific examples. 
 

Theorem (Extending partial orderings to linear orderings).   Let  (A, OOOO)  be a 

FINITE  partially ordered set.   Then  OOOO  is contained in some linear ordering LLLL  such 

that  u  OOOO  v  implies  u  LLLL  v . 
 

The proof relies upon the following preliminary result: 
 

Lemma.   Let  (A, OOOO)  be a nonempty  FINITE  partially ordered set.   Then A has a 

minimal element . 
 

PROOF OF THE LEMMA.    Suppose that the conclusion is false, and assume that  A 

has exactly  n  elements .   Let  x1 ∈∈∈∈ A be arbitrary.  Since there is no minimal element 

in  A we can find x2 ∈∈∈∈ A such that  x2  <  x1.  We can continue in this fashion to 

conclude that there are also elements x j for  j = 1, … , n + 1  such that  x1 > … > xn + 1.  
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But this is impossible because  A only has  n  elements, so we have a contradiction.  
The source of the contradiction is our assumption that  A  has no minimal element, and 

it follows that  A  must have a minimal element. 
 

PROOF OF THE THEOREM.    Let  x1  be a minimal element of A.  Extend the binary 

relation  OOOO  to  OOOO1  by adjoining all pairs of the form ( x1, y) where  y runs through all the 

elements of  A .  It follows that  OOOO1 is also a partial ordering,  but now we have  x1  ≠≠≠≠  y 

for all  y ∈∈∈∈ A  with respect to the enriched ordering  OOOO1 (observe that  y  OOOO1  y′′′′ implies  

y  OOOO  y′′′′ for all  y, y′′′′ ≠≠≠≠  x1).  Assuming  A  has at least two elements we can then find a 

minimal element  x2  of  A – { x1 },  and form  OOOO2  on the latter subset by adjoining all 

ordered pairs  ( x2,  y) where  y  runs through all the elements of A – { x1 }.   Then we 

have  x1  <  x2  <  y  for all  y ∈∈∈∈ A – { x1, x2 } with respect to the enriched ordering OOOO2 .  

We may continue in this manner recursively for each  k  ≤≤≤≤  n, expanding the ordering to  

OOOOk  and obtaining a sequence of elements  { xj } such that   x1  <  … <  xk <  y   for all  

y ∈∈∈∈ A – { x1, … , x k = 1 }.  This process terminates with  k  =  n, at which point we shall 

obtain the linear ordering  x1  <  … <  xn . 

 

An example will be posted in Lecture 09A. 
 
 

 

  


