Example for extending partial orderings to linear orderings

Let $\boldsymbol{A}=\{\mathbf{0}, \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}\}$, and take the partial ordering which is uniquely specified by taking the following ordered pairs to be strict inequalties:

$(\mathbf{0}, \mathbf{a})$	$(\mathbf{0}, \mathbf{b})$	(\mathbf{a}, \mathbf{c})
(\mathbf{b}, \mathbf{c})	(\mathbf{a}, \mathbf{d})	(\mathbf{b}, \mathbf{e})
(\mathbf{c}, \mathbf{f})	(\mathbf{d}, \mathbf{f})	(\mathbf{e}, \mathbf{f})

This is not a linear ordering because neither a nor \mathbf{e} precedes the other. According to the procedure described in the theorem for obtaining a linear ordering, the first step is to find a minimal element. Going through the possibilities, we see that $\mathbf{0}$ is a minimal element; in this case we can check that $\mathbf{0}$ already precedes everything else, so we do not need to add any relations at this step. However, at the second step we find that both \mathbf{a} and \mathbf{b} are minimal elements if $\mathbf{0}$ is deleted. We need to choose one of these, so let us take a and add all ordered pairs (\mathbf{a}, \mathbf{x}) where \mathbf{x} runs through all the elements except $\mathbf{0}$. If we now delete $\mathbf{0}$ and \mathbf{a} then \mathbf{b} is still a minimal element, so now add all ordered pairs (\mathbf{b}, \mathbf{y}) where \mathbf{y} runs through all the elements except $\mathbf{0}$ and a. Now consider the subset $\{\mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}\}$. The minimal elements here are \mathbf{c} and \mathbf{d}, so first add all ordered pairs (\mathbf{c}, \mathbf{z}) where \mathbf{z} belongs to $\{\mathbf{d}, \mathbf{e}, \mathbf{f}\}$. Next note that the ordered pairs (d, e) and (d,f) are already in the original partial ordering, and follow this by noting that the ordered pair (\mathbf{e}, \mathbf{f}) is also aready in the partial ordering. We are now left with only one element, namely \mathbf{f}, and clearly there is nothing more to do at this point because we now have an ordering in which everything else precedes \mathbf{f}. In this case it turns out that the original partial ordering has been extended to the usual alphabetical ordering with $\mathbf{0}$ preceding all the letters. However, we also could have obtained other linear orderings by the same procedure. For example, if we had chosen b at the second step we would have obtained $\mathbf{0}<\mathbf{b}<\mathbf{a}<\mathbf{c}<\mathbf{d}<\mathbf{e}<\mathbf{f}$.

