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Countably infinite sets 
 

Definition.  A set is countable if it is in 1 – 1 correspondence with a subset of the 

nonnegative integers  NNNN, and it is denumerable if it is in 1 – 1 correspondence with the 

natural numbers.  However, many writers use countable as a synonym for denumer-

able, so one must be careful.   Frequently one also sees the phrase “countably 
infinite” employed as a synonym for denumerable. 
 

The following observation is a direct consequence of the definition.  
 

Proposition.   Let  f : A →→→→ B  be a function which is 1 – 1.  If  B  is countable then so 

is A.  
 

PROOF.     The image f  [A] is a subset of  B, and the latter is in 1 – 1 correspondence 

with a subset of  NNNN,  so  A   is also in 1 – 1 correspondence with a subset of  NNNN. 
 

We shall proceed by recalling a result from the preceding lecture.   
 

Proposition (Cross Section Property).  Let  f : A →→→→ B  be a function which is onto.  

Then there is a 1 – 1 function  σσσσ : B →→→→ A (a cross section) such that  f      
oooo σσσσ  (b) = b  

for all  b  ∈∈∈∈  B.  
 

The following special case of this result will be extremely useful: 
 

Corollary.   Let  f : A →→→→ B  be a function which is onto.  If  A  is countable then so is B.  
 

PROOF.   By the proposition there is a 1 – 1 mapping  σσσσ : B →→→→ A.  Since  A  is 

countable, so is B. 
 
We now want to prove that several other constructions on countable sets will yield  

countable sets.   It will be helpful to introduce the following simple set – theoretic 

construction, which occurs frequently in mathematical writings but usually not in 

textbooks.  Given two sets  A  and  B  a disjoint union xis a union of disjoint copies of  

A  and  B.  Formally, the disjoint sum (or disjoint union) is defined as the set 

A  ⊔⊔⊔⊔  B   =   A ×××× {1}  ∪∪∪∪   B ×××× {2} 

and the standard injection mappings  iA : A   →→→→   A  ⊔⊔⊔⊔  B  and   iB : B   →→→→   A  ⊔⊔⊔⊔  B  

are defined by  
 

iA  (a)  =  (a, 1)      and       iB (b)  =  (b, 2) 
 

respectively.  By construction, we have the following elementary consequences of the 
definition: 
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Proposition (Disjoint union properties).   Suppose that we are given the setting and 

constructions described above. 
 

(1)  The injection maps  iA  and  iB   determine 1 – 1 correspondences  jA 

from A  to  iA [A] and  jB from B  to  iB [B]. 
 

(2)  The images of A  and  B  are disjoint. 

(3)  The union of the images of  A  and  B  is all of  A  ⊔⊔⊔⊔     B . 
 

The proof of this result is fairly simple, but we include it for the sake of completeness 

and because it is not necessarily easy to locate in the literature. 
 

PROOF OF (1).  The sets  iA [A]  and  iB [B]  are equal to A ×××× {1}  and   B ×××× {2} 

respectively, and we have  jA  (a)  =  (a, 1)  and  jB (b)  =  (b, 2).  It follows that inverse 

maps are given by projections from  A ×××× {1} and  B ×××× {2} to A  and  B respectively. 
 

PROOF OF (2).  The second coordinate of an element in the image of  jA  is equal to 1, 

and the second coordinate of an element in the image of  jB  is equal to 2.  Therefore 

points in the image of one map cannot lie in the image of the other.  
 

PROOF OF (3).  Clearly the union is contained in  A  ⊔⊔⊔⊔     B .  Conversely, if we are given 

a point in the latter, then either it has the form  (a, 1)  =  jA  (a)  or  (b, 2)  =  jB (b).  

 

With the notation and observations given above, we can state and prove the following 

results: 
 

Theorem.   There is a 1 – 1 onto mapping h from  NNNN  ⊔⊔⊔⊔     NNNN  to  NNNN. 
 

Corollary.  If  A  and  B  are countable sets then so is  A  ∪∪∪∪  B . 
 

PROOF OF THE COROLLARY.   Let  f : A →→→→ NNNN and g : B →→→→ NNNN be 1 – 1 mappings, 

and define  k : A ⊔⊔⊔⊔    B   →→→→  NNNN  ⊔⊔⊔⊔     NNNN     by  k(a, 1)  =  ( f (a), 1)  and  k(b, 2)  =   

( g (b), 2).  It is a routine exercise to check that  k  is  1 – 1, and it follows that the 

composite  h      
oooo k is a 1 – 1 mapping from  A ⊔⊔⊔⊔    B  to NNNN.  Therefore A ⊔⊔⊔⊔    B is countable.  

Now let F : A ⊔⊔⊔⊔    B →→→→ A  ∪∪∪∪  B   by F(a, 1)  =  a  and  F(b, 2)  =  b.  Then F is onto, and 

since A ⊔⊔⊔⊔    B  is countable the same is true for A  ∪∪∪∪  B . 
 

PROOF OF THE THEOREM.   The idea is to send the first copy of  NNNN  to the 

nonnegative even integers and the second copy to the nonnegative odd integers.  More 
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precisely, let  h  send (m, 1)  to  2 m  and  (m, 2)  to  2 m + 1.  Then the restriction of  h  

to each copy of  NNNN     is  1 – 1 and the images of the two copies are all of  NNNN.   

 

Corollary.  There is a 1 – 1 onto mapping from the set  NNNN  of all nonnegative integers 

to the set  ZZZZ  of all (signed) integers. 
 

PROOF.  In view of the theorem, we need only find a  1 – 1  correspondence from the 

set  NNNN  ⊔⊔⊔⊔     NNNN to  ZZZZ.  Define a mapping  G  which sends the first copy to the set of all  

nonnegative integers by the identity, so that  G(n, 1)  =  n.  On the other summand, 
define  G  to map  NNNN     to the negative integers via the formula  G(n, 2)  =  – 1 – n.  

Once again it is straightforward to checik that  G  is 1 – 1 and onto. 

 

The next result shows that  NNNN  is a minimally infinite set.   
 

Theorem.  Let  A  be an infinite set.  Then there is a 1 – 1 mapping from  NNNN  into  A. 
 

PROOF.    We shall define a 1 – 1 mapping from  NNNN  to  A recursively.   
 

Since A is infinite, it contains some element.  Pick one such element  x0  and define  

g0: { 0 }  →→→→     A  by  g0 (0)  =  x0 .   Since  A  is infinite we know that  A – { x0 } is 

nonempty.  Extend  g0  to a mapping  g1: { 0, 1 }  →→→→     A  by chooing some element   

x1  ∈∈∈∈ A – { x0 }.   
 

More generally, if we already have a partial 1 – 1 function gn:  { 0, … , n – 1 }  →→→→         A, 

extend the definition to the set { 0, … , n }  by noting that the (finite) image of  gn  is a 

proper subset of A (which is infinite) and choosing  gn + 1(x)  to be an element of  A  not 

in the image of  gn.  The increasing union of these functions will be the required function 

from  NNNN  to  A.  It will be 1 – 1 because it is 1 – 1 on each subset { 0, … , n – 1 }; if  

 f (x)  =  f ( y), then there is some  n such that  x  and  y both belong to { 0, … , n – 1 }, 
and therefore it follows that  x  and  y  must be equal. 
 
The preceding result leads to a simple characterization of infinite sets. 
 

Theorem (Galileo’s Paradox).   A set  A  is infinite if and only if there is a 1 – 1 

correspondence from  A  to a proper subset of itself. 
 

PROOF.  We already know that a finite set does not admit such a 1 – 1 onto mapping, 
so we need only show that every infinite set supports such a mapping.   We shall 
use the preceding theorem to construct such a function.   
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Let  g :  NNNN  →→→→  A be a  1 – 1  function, and let  C  =  A – g [NNNN].   Define a new function  

h :  A  →→→→  A  – {  g  (0) } such that  h  sends  C  to itself by the identity and h maps  g [NNNN] 

to  g [NNNN+]  (where NNNN+ denotes the positive integers) by sending  g  (k) to  g  (k + 1).  It 

follows that  h  defines a 1 – 1  onto mapping from  A  to  A  – {  g  (0) }. 

 
Transfinite cardinal numbers 

 
Having shown that there is a 1 – 1 correspondence between the nonnegative integers 

and the integers themselves, it is natural to ask whether there are also 1 – 1 

correspondences between  NNNN  and the rational numbers or the real numbers.  The most 

transparent way to do this is to formulate everything by describing a concept of 

transfinite cardinal numbers for infinite sets.  The first steps are simple. 
 

Definition.   If  A  and  B  are sets, we write | A |  =  | B |, and say that the cardinality of 

A  is equal to the cardinality of  B  if there is a 1 – 1  onto map from  A  to  B.  
 

Proposition (Equivalence properties of cardinalities).   Let  S be a set.  Then the 

relation | A |  =  | B | is an equivalence relation on the subsets of S .   
 

PROOF.   The relation is reflexive because the identity map on  A  is a 1 – 1 onto map 

from  A  to itself.  Also, the relation is symmetric, for if  f : A →→→→ B  is a 1 – 1 onto 

mapping then so is its inverse  f  
–

 
1
:  B →→→→ A.  Finally, the relation is transitive, for if  

 f : A →→→→ B and  g : B →→→→ C  are 1 – 1 onto then so is the composite  g      
oooo f : A →→→→ C. 

 

The equivalence classes of the “same cardinality” relation are called the set of  cardinal 

numbers  for the set S .   One can also talk about the collection of ALL cardinal 

numbers , but this object turns out to be too large to be a set. 
 

The set of cardinal numbers  Card( S) for a set  S  has many properties in common with 

the nonnegative integers   NNNN.   For example, one can define arithmetic operations;  

these operations behave in some ways that are similar to the rules for nonnegative 

integers, but in other respects they behave quite differently.  One can also define a 

candidate for a partial ordering on Card( S) , and this concept turns out to be 

fundamentally important. 
 

Definition.   If  A  and  B  are sets, we write | A |  ≤≤≤≤  | B |, and say that the cardinality of 

A  is less than or equal to the cardinality of  B  if there is a 1 – 1 map from A  to  B. 
    
The notation suggests that this relationship should behave like a partial ordering (in 

analogy with finite sets we would like it to be a linear ordering, but reasons for being 
more modest in the infinite case will be discussed later).  It follows immediately that the 
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relation we have defined is  reflexive  (take the identity map on a set A) and  transitive 

(given 1 – 1  maps  f : A →→→→ B and  g : B →→→→ C, the composite  g      
oooo f  is also 1 – 1), but 

the proof that it is antisymmetric is decidedly nontrivial: 
  

Theorem (Schröder – Bernstein Theorem).  If A  and  B are sets and there are 1 – 1 

maps  A →→→→ B  and  B →→→→ A, then | A |  =  | B |. 
  

Proof.    Let  f : A →→→→ B and  g : B →→→→ A  be 1 – 1 mappings; both exist by the given 

assumptions.   

Each  a  ∈∈∈∈  A is the image of at most one parent element  b  ∈∈∈∈  B; in turn, the latter (if 

it exists) has at most one parent element in  A, and so on.  The idea is to trace back the 

ancestry of each element as far as possible.  For each point in A  or  B there are 

exactly three possibilities:  
 

1. The ancestral chain may go back forever.  
2. The ancestral chain may terminate in A.  
3. The ancestral chain may terminate in B. 

  

We can then split  A  and  B  into three pairwise disjoint pieces corresponding to these 

cases, and we shall call the pieces  A1, A2, A3 and B1, B2, B3 (where the possibilities 

are ordered as in the list). 
  

The map  f  defines a  1 – 1  correspondence between  A1  and  B1  (and likewise for 

g).  Furthermore,  g  defines a 1 – 1  correspondence from A2 to B2 , and  f  defines a 

1 – 1  correspondence from B3 to A3.  If we combine these 1 – 1  correspondences  

A1     ↔↔↔↔  B1,   A2     ↔↔↔↔  B2,  and  A3     ↔↔↔↔  B3, we get a 1 – 1  correspondence between all of 

A  and all of  B. 
 

Here is an immediate consequence of the Schröder – Bernstein Theorem: 
 

Proposition (NNNN has the smallest infinite cardinal number).  If A is an infinite set then 

|    NNNN    |  ≤≤≤≤  | A |.  Furthermore, if A is an infinite subset of the nonnegative integers |    NNNN    |, 

then  | A |  =  |    NNNN    |. 
 

PROOF.    We can define a 1 – 1 mapping from  NNNN  to  A  recursively as in the proof of 

Galileo’s Paradox; the existence of such a map will imply |    NNNN    |  ≤≤≤≤  | A |.  If  A  is also 

countable, then by assumption we also have the reverse inequality  | A |  ≤≤≤≤  | NNNN |, and 

therefore the Schröder – Bernstein Theorem implies that  | A |  =  |    NNNN    |  in this case. 

 
NOTATION.  Following Cantor, it is customary to denote the cardinal number of the 

natural numbers by ℵℵℵℵ0 (verbalized as aleph – null).  The preceding result implies that  

ℵℵℵℵ0  ≤≤≤≤  | A |  for every infinite set  A. 


