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L12 
 

Cardinalities of number systems 
 

This lecture develops the additional tools needed to answer the following questions:  
What are the cardinalities of the standard number systems, including the rational 

numbers  QQQQ,  the real numbers  RRRR,  and the complex numbers  CCCC?   Several of the 

results that we prove are also significant in their own right, and the next lecture places 

many of these result s into a more general setting. 
 

In the previous lecture we showed that the set  ZZZZ  of (signed) integers has the same 

cardinality as the set  NNNN of nonnegative integers using the identity |NNNN  ⊔⊔⊔⊔     NNNN|      =  |NNNN|.  
The main steps in finding the cardinalities for the other number systems involve further 

identities of this type.   
 

Theorem.    There is a  1 – 1 correspondence from  NNNN    ×××× NNNN  to NNNN.  
 

PROOF.    We shall first define a 1 – 1 mapping  f  from  NNNN+ ×××× NNNN+  onto NNNN+  by a 

diagonal construction due to Cantor.   The picture below illustrates the idea behind the 

definition of the function; the explicit formula is  
 

f (m, n)  =  ½ (m + n – 1)(m + n – 2) + m. 
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A verification that  f  is 1 – 1  is straightforward;  the ordered pairs  (m, n)  on the 

diagonal line  m + n  =  p  are sent to the integers running from  ½ (p – 1)(p – 2) + 1  

to  ½ (p – 1)(p – 2)  as  m  runs from 1  to  p – 1. 
 

We also have an easily defined 1 – 1 mapping in the opposite direction sending  n  to  

(n, 1).  We can now use the Schröder – Bernstein Theorem to prove the equality |    NNNN+|  

=  |    NNNN+ ×××× NNNN+|.  Since there is an obvious  1 – 1 correspondence from  NNNN  to NNNN+ 

sending  k  to k + 1, it also follows that |    NNNN    |  =  |    NNNN    ×××× NNNN    |. 
 

The discussion thus far naturally leads one to ask whether all infinite sets have the 

same cardinal number.  However, the following fundamentally important result due to 

Cantor shows that there are many transfinite cardinal numbers. 
 

Theorem (No largest cardinal number).   If A is a set then | A |  <  |PPPP (A) | .   
 

PROOF.   Define a  1 – 1 mapping from A to  PPPP (A)  sending an element  a ∈∈∈∈     A  to 

the one point subset { a }.  This shows that  | A |  ≤≤≤≤  |PPPP (A) | . 
  

The proof that  | A |  ≠≠≠≠  |PPPP (A) |  is carried out by using another Cantor diagonal 

process.   Recall that there is a  1 – 1  correspondence between  PPPP (A)  and the set Y 

of all functions from  A  to {0, 1} which is given by sending a subset  B  to its 

characteristic function  χχχχ B , so it suffices to prove the inequality where PPPP (A)  is 

replaced by  Y.  Suppose that there is a 1 – 1 correspondence F : A  →→→→     Y.  The idea 

is to construct a new function  g ∈∈∈∈    Y  that is not in the image of F .   
 

Specifically, choose g such that, for each  a ∈∈∈∈     A, the value  g(a)  will be the unique 

element of {0, 1} which is NOT equal to [ F(a) ] (a) ;  recall that  F(a)  is also a function 

from  A  to {0, 1} and as such it can be evaluated at  a.  Since the values of  g  and 

F(a)   at  a ∈∈∈∈     A  are different, these two functions are distinct, and since  a ∈∈∈∈     A is 

arbitrary it follows that g cannot lie in the image of F .   However, we were assuming that 

F was onto, so this yields a contradiction.  Therefore there cannot be a  1 – 1 

correspondence between A  and  PPPP (A).   

 

Comments on the method of proof.  The reason for the name diagonal process is 

illustrated below when A is the set  NNNN+  of positive integers.  One assumes the 

existence of a 1 – 1 correspondence between NNNN+ and PPPP (NNNN+) and identifies the latter 

with the set of functions from  NNNN+ to {0, 1} in the standard fashion.  Then for each 

positive integer one has an associated sequence of  0’s  and  1’s  that are indexed by 

the positive integers, and one can represent them in a table or matrix form as illustrated 
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below, in which each of the terms  x j  (where  x  is a letter and j is a positive integer) is 

equal to either  0 or 1. 
 

 
 

The existence of a 1 – 1 correspondence implies that all sequences appear on the list.  

However, if we change each of the bold entries (i.e., the entry in the n 
th row and n 

th 

column for each n) by taking 0 if the original entry is 1 and vice versa, we obtain a new 

sequence that is not already on the list, showing that  PPPP (NNNN+) cannot be put into 

correspondence with NNNN+ and thus represents a higher order of infinity.  
 

The preceding result implies that  “there is no set of all cardinal numbers.”  Stated 

differently, there is no set  S  such that every set  A  is in 1 – 1 correspondence with a 

subset of S.  If such a set existed, then  PPPP (S)  would be in 1 – 1 correspondence with 

some subset  T  ⊂⊂⊂⊂     S,  and hence we would obtain the contradiction  
 

|PPPP (S) |   =   |T |   ≤≤≤≤   |S |   <   |PPPP (S) |. 

 
 

Theorem (Cardinality of the rational numbers).  If  QQQQ denotes the rational numbers, 

then its cardinality satisfies  |    NNNN    | =  |    QQQQ|.  
 

PROOF.   The idea is to construct 1 – 1 maps from  QQQQ     to  NNNN  and vice versa, and then 

to apply the Schröder – Bernstein Theorem. 
 

We can construct a mapping from  NNNN    ×××× NNNN onto the positive rationals QQQQ + by sending the 

ordered pair ( p , q) to the fraction  
 � + 1

� + 1 
 

and then applying the result which states that the existence of such an onto map implies 

|    QQQQ +|  ≤≤≤≤  |    NNNN    ×××× NNNN    |.  Since |    NNNN    ×××× NNNN    |  =  |    NNNN    |,  it follows that |    QQQQ +|  ≤≤≤≤  |    NNNN    |.   Likewise, we 

can map  NNNN  onto the nonpositive rational numbers in  QQQQ ;  namely, use the composite 

map  NNNN →→→→ NNNN    ×××× NNNN →→→→ QQQQ +  to define an onto mapping  from QQQQ –  (the negative rationals) 
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to  NNNN+ and send  0 to itself.   Combining these, we obtain an onto map from the disjoint 

union NNNN ⊔⊔⊔⊔    NNNN  to QQQQ,  and therefore we have  |    QQQQ    |  ≤≤≤≤  |    NNNN ⊔⊔⊔⊔    NNNN    |  =  |    NNNN    |.   
 

Defining the mapping in the other direction is much easier; we need only take the 

standard inclusion of  NNNN  in  QQQQ.  Since we have now constructed  1 – 1 mappings in 

both directions, we can apply the Schröder – Bernstein Theorem to complete the 

proof.  
 

 

Theorem (Cardinality of the real numbers).  If  RRRR denotes the real numbers, then its 

cardinality satisfies  |PPPP (NNNN) |  =  |    RRRR|   and therefore we have  |    RRRR|  >  |    NNNN    | =  |    QQQQ|.  
 

PROOF.   Usually this is derived using decimal expansions of real numbers, but we 
shall give a proof that does not involve decimals (although the idea is similar).  The idea 

is to construct 1 – 1 maps from  RRRR     to  PPPP (NNNN)   and vice versa and then to apply the 

Schröder – Bernstein Theorem. 
 

Let  D : RRRR  →→→→  PPPP (QQQQ) be the Dedekind cut map sending a real number  x  to the set of 

all  rational  numbers less than x.  Since there is always a rational number between 

any two distinct real numbers, it follows that this map is  1 – 1.   Furthermore,  since  

|    QQQQ|  =   |    NNNN    |  it follows that there is a 1 – 1 correspondence from PPPP (QQQQ)  to  PPPP (NNNN),  and 

the composite of  D with this map gives the desired 1 – 1 map from  RRRR     to  PPPP (NNNN). 
  

Let  PPPP∞∞∞∞ (NNNN)  denote the set of all infinite subsets of  NNNN, and define a function  σσσσ   from  

PPPP∞∞∞∞ (NNNN)  to  RRRR as follows:  Given an infinite subset  B,  let  XB  be its characteristic 

function and consider the infinite series 
 

����  =  � ����
 


∙ ���� . 

  

This series always converges by the Comparison Test because its terms are 
nonnegative and less than or equal to those of the geometric series  
 

� =  �  
 


���� . 

   

Note that all these sums lie in the interval  [0, 1].  Furthermore,  we claim that different 

infinite subsets will yield different values.   Verifying this is not difficult, but we shall give 

the details for the sake of completeness:   Given subsets X and Y of  NNNN, write the 

function values as base 2 floating point expressions 
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σσσσ    (X)  =  0. x1 x2 x3 …    and    σσσσ    (Y)  =  0. y1 y2 y3 … 
  

where the x’s and y’s are 0 or 1 and there are infinitely many 1’s in both cases.  If  X 

and Y are distinct subsets, then there is some first  k  such that  k  belongs to one set 

but not the other, and this translates to the inequality  xk  ≠≠≠≠     yk.  Since  k  is the first 

integer which is in one set but not the other, we also have  xj  =     yj  for  j  <  k.  We 

might as well assume that  xk  =  0  and  yk  =  1 (if not, simply reverse the roles of  x 

and  y  in the argument that follows).  The goal is then to show that  σσσσ (X)  <  σσσσ (Y), 
which will imply that  σσσσ   is  1 – 1.    
 

Let  c  be the (finite) binary fraction obtained by taking  cj  =     yj  for  j  ≤≤≤≤  k and cj  =     0  

if  j  >  k.  .  An upper estimate  d  for  σσσσ (X)  is given by taking  dj  =     xj  for  j  ≤≤≤≤  k and 

dj  =     1  if  j  >  k.   Clearly we then have  σσσσ (X)  ≤≤≤≤     d.   However, one can also check 

directly that  c  =  d  by a geometric series arbument.  Now there are infinitely many 1’s 

in the series for  σσσσ (Y),  and in particular we have  ym  =     1 for some  m  >  k.   

Therefore it follows that σσσσ (X)  ≤≤≤≤     d  =  c   ≤≤≤≤      σσσσ (Y),   which is what we wanted to 

prove.   This completes the proof that  σσσσ   is  1 – 1. 
 

On the other hand, if A is a finite subset, consider the finite sum 
 

����  =   � + � ����
 


∙ ���� . 

 

Once again it follows that different finite subsets determine different real (in fact, 
rational ) numbers.  Furthermore, since the value associated to a finite set lies in the 

interval  [2, 3]  it is clear that a finite set and an infinite set cannot go to the same real 

number.  Therefore we have constructed a 1 – 1 function from PPPP (NNNN) to RRRR.  
 

Since we have constructed  1 – 1 mappings in both directions, we can apply the 

Schröder – Bernstein Theorem to complete the proof.  
  

Finally, we need to determine the cardinality of the complex numbers  CCCC.  By 

construction, the complex numbers are in 1 – 1 correspondence with the points on the 

coordinate plane  RRRR 

2
,  so the cardinality of  CCCC is given by the following result:  

 

Theorem (Cardinality of the complex numbers).  If  CCCC denotes the real numbers, 

then its cardinality satisfies  |    CCCC |  =  |    RRRR 

2|  =  |    RRRR|. 
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One slightly nonintuitive consequence of this theorem is the existence of a 1 – 1 
correspondence between the points of the number line and the points on the coordinate 

plane.   Of course, these objects with all their standard mathematical structures are 

quite different, but the theorem says that the two number systems cannot be shown to 

be distinct simply by means of transfinite cardinal numbers. 
 

PROOF.    The proof uses a few general facts about the sets of functions from one set 
to another. 
 

Lemma 1.  If X, Y and  C are nonempty sets and there is a  1 – 1 correspondence  f 

from X  to  Y,  then there is a  1 – 1 correspondence of function sets from  F(Y, C) to 

F(Y, C). 
 

PROOF.  Let ϕϕϕϕ ( f ): F(Y, C)  →→→→  F(X, C) send  g : Y →→→→ C  to  g      
oooo f .  Direct cal-

culation shows that  ϕϕϕϕ ( f –1
 ) : F(X, C)  →→→→  F(Y, C) is an inverse function to ϕϕϕϕ ( f ) . 

 

Lemma 2.  If A, B and  C are nonempty sets, then there is a  1 – 1 correspondence 

from  F(A ⊔⊔⊔⊔ B, C)  to  F(A, C) ×××× F(B, C). 

PROOF.   A function f : A ⊔⊔⊔⊔ B →→→→ C  is completely determined by its restrictions to the 

summands  A ×××× {1} and  B ×××× {2}, and conversely every ordered pair of mappings  

 f : A ×××× {1} →→→→ C  and  g : B ×××× {2} →→→→ C  can be pieced together into a well – defined 

function from A ⊔⊔⊔⊔ B  to  C  because A ×××× {1} and  B ×××× {2} have no elements in 

common.  This proves the lemma if  A  and  B  are replaced by A ×××× {1} and  B ×××× {2}.  

Since there are standard 1 – 1 correspondences A        ↔↔↔↔  A ×××× {1}  and B        ↔↔↔↔  B ×××× {2} 

given by a ↔↔↔↔ (a, 1) and b ↔↔↔↔ (b, 2) respectively, Lemma 2 follows from the preceding 

argument and Lemma 1. 
 

Application to proving the theorem.    We know that there is a 1 – 1 correspondence 

h  from  RRRR     to  F(NNNN, { 0, 1 }), and if we define  
 

h ×××× h:    RRRR ×××× RRRR →→→→ F(NNNN, { 0, 1 }) ×××× F(NNNN, { 0, 1 })   by   h x h(u, v)  =  (h(u) , h(v) )  
 

then  h ×××× h  defines a 1 – 1 correspondence of the associated Cartesian squares 

whose inverse is h–
 

1
 ×××× h–

 

1.   By Lemma 2 the codomain of  h ×××× h  is in 1 – 1 

correspondence with F(NNNN ⊔⊔⊔⊔    NNNN, { 0, 1 }), and by Lemma 1 and the previously shown 

identity NNNN ⊔⊔⊔⊔    NNNN  ↔↔↔↔  NNNN we know that there is a 1 – 1 correspondence from the last 

function set to F(NNNN, { 0, 1 }).  Combining these observations, we obtain a 1 – 1 

correpondence from  RRRR ×××× RRRR  to  RRRR.  Since  CCCC = RRRR ×××× RRRR by construction, it follows that  

|    CCCC |  =  |    RRRR 

2|  =  |    RRRR|. 


