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SOLUTIONS FOR WEEK 06 EXERCISES

Cunningham, Exercises 5.1

8. The map is 1–1 by the Fundamental Theorem of Arithmetic, which states that the
factorization of a positive integer into a product of primes is unique up to rearrangement
of factors. Suppose now that i ≤ m and j ≤ n and either i < m or j < n (this is stronger
than the hypotheses in Cunningham). Then 2i ≤ 2m and 3j ≤ 3n, with either 2i < 2m

and 3j < 3n. In both of the latter cases we have 2i3j < 2m3n.

12. Suppose that A−B is finite. Then A = B ∪ (A−B) where both B and A−B are
finite. It follows that A is also finite, contradicting our assumption that A is infinite. The
source of the problem is our assumption that A−B is finite, and therefore A−B must be
infinite.

16. If f : {1, ..., n} → A is onto, then by the Cross Section Property we know that
|A| ≤ |{1, ..., n}| = n.

Cunningham, Exercises 5.2

7. Since A and B are countable sets, there are 1–1 maps f : A → N and g : B → N.
Define f × g : A × B → N × N by f × g(a, b) = ( f(a), g(b) ). This map is 1–1, for
f × g(a, b) = f × g(a′, b′) implies f(a) = f(a′) and g(b) = g(b′). Since f and g are both
1–1, we have a = a′ and b = b′, so that (a, b) = (a′, b′).

By definition we have |A × B| ≤ |N × N|, and since |N × N| = |N| it follows that
|A×B| ≤ |N|.

14. Follow the hints. Note: This exercise uses material from Lecture 13 in Week 07
and it might have been better to place in the exercises07.pdf file.

Step 1. — A countable union of countable sets is countable. — PROOF: Let
A0, A1, ... be the countable family of countable sets, and suppose that Ai = {ai,0, ai,1 ... }.
Let D ⊂ N× N be the set of all (i, j) such that ai,j is defined (note that the collection of
sets might be finite or there might be finite sets in the collection, in which case ai,j might
not be definable). Let α : D → U =

⋃
i Ai be the map α(i, j) = ai,j . By construction this

map is onto.

Since D ⊂ N × N and the latter is countable, we know that D is countable. By the
Cross Section Property we have |U | ≤ |D|, which means that U must also be countable.
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Step 2. — The set ∆n of polynomials of degree n is countable if n > 0, and
likewise for the set ∆0 of constant polynomials (there are reasons for and against taking
the degree of the zero polynomial to be 0, and this avoids such arguments). — PROOF:
The polynomials of degree n are in 1–1 correspondence with a subset of Zn+1, where we
define the latter recursively by Z2 = Z×Z and Zk+1 = Zk×Z; it turns out that |Zn| = |N|
(see lecture13.pdf for more on this; one can derive this result in a manner similar to the
proof that |Rn| = |R|). More precisely, if the polynomial is ant

n + ... + a1t + a0, map it
to the coefficient sequence (an, ... , a0). We then have |∆n| ≤ |Zn+1| = |N|. On the other
hand, there are infinitely many choices for the leading term of the polynomial, so we also
have |N| ≤ |∆n|. We can now apply the Schröder-Bernstein Theorem to conclude that ∆n

is countable.

Final Step. We have decomposed the algebra of polynomials Z[t] into a countable
union

⋃
n ∆n, and in Step 2 we showed that each of the sets ∆n is countable. We cann

now apply Step 1 to conclude that their union, which is the entire polynomial algebra, is
also countable.

Cunningham, Exercises 5.3

1. Since B is nonempty there is some b0 ∈ B. If we define β0 : A → A × B to be the
slice embedding β0(a) = (a, b0), then β0 is 1–1. Therefore we have |A| ≤ |A × B|. Since
we also have |N| < |A|, this implies |N| < |A×B|.

2. Suppose that A−B is countable. We know that A = (A ∩B) ∪ (A−B). Since B is
countable and A ∩ B ⊂ B, it follows that A ∩ B is also countable, and therefore the first
two sentences imply that A is a union of two countable sets and hence is countable. This
contradicts the assumption that A is not countable; the source of the contradiction is our
assuming that A−B was countable, so this must be false and A−B must be uncountable.

3. This is a special case of the preceding exercise with A = R and B = Q.

4. If B were countable, then A ⊂ B would imply |A| ≤ |B| ≤ |N|, so that A would
also be countable. Since A is not countable by assumption, it follows that B must also be
uncountable.

7. For each b ∈ B let Cb : A → B be the constant function whose value is always
b. Then x 6= y implies that the images of Cx and Cy are nonempty and disjoint, and
therefore Cx 6= Cy. This means that |B| ≤ |F(A,B)|. Since B is uncountable, it follows
that F(A,B) is also uncountable.

Cunningham, Exercises 5.4

1. Let f(x) = 2 + 3x; we need only verify that f is 1–1 and onto, and we can do this by
finding an inverse function. If we solve y = 2 + 3x for x, we obtain the formula

f−1(y) = x =
y − 2

3
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and direct calculation yields f−1 of(x) = x and f of−1(y) = y for all x and y in the
respective open intervals. Therefore we have a 1–1 correspondence from the open interval
A = (0, 1) to the open interval B = (2, 5) and consequently we have |A| = |B|.

12. Previously we showed that the function

f(x) =
x

1 + |x|

defines a 1–1 correspondence from R to the open interval (−1, 1). If we compose this
with the inclusion (−1, 1) → [−π, π) we see that |R| ≤ the cardinality of [−π, π). On the
other hand, if we consider the inclusion [−π, π) ⊂ R we obtain the reverse inequality of
cardinal numbers. Therefore we can apply the Schröder-Bernstein Theorem to conclude
that [−π, π) and R have the same cardinal number.

16. The hypotheses imply that |A| ≤ |B| ≤ |C| = |A|, so that |A| ≤ |B| and vice versa.
Apply the Schröder-Bernstein Theorem to conclude that |A| = |B|.

19. The mapping h is 1–1, for h(a, b) = h(a′, b′) implies f(a) = f(a′) and g(b) = g(b′),
which in turn imply a = a′ and b = b′, so that (a, b) = (a′, b′). Given (c, d) ∈ K × L we
also know that c = f(a) and d = g(b) for suitable a and b, and all this translates into the
equation (c, d) = h(a, b), showing that h is also onto.

34. If we can show that R and the interval (0, 1) have the same cardinality, then by the
preceding Exercise 19 and |R × R| = |R| we can conclude that (0, 1)2 and (0, 1) have the
same cardinal number. As noted before, we have constructed a specific 1–1 correspondence
from R to the interval (−1, 1), so it is enough to construct a 1–1 correspondence from the
latter to the interval (0, 1). Once again we can do this by means of a linear function which
sends −1 to 0 and 1 to itself (see the first exercise from this section). The explicit formula
is f(x) = 1

2 (x+ 1).

The remaining exercises in exercises06.pdf

1. Follow the hint and define C to be all integers of the form n+ b where b ∈ B. Then
C is a nonempty subset of N ⊂ Z and as such it has a least element c0. We claim that
b0 = c0 − n is a (acturally, the) least element of B. By construction we have c0 − n ∈ B
and n + b0 ∈ C. Given an arbitrary element b ∈ B we have n + b ∈ C, and since c0 is
minimal in C it follows that c0 = n + b0 ≤ n + b. Subtracting n from each side we have
b0 ≤ b and hence b0 is a minimal element of B.

2. Suppose that 1 ≤ k ≤ 10. How many pairs of the form (k,m) lie inin the set?
Regardless of whether k is even or odd, there are 5 choices (odd numbers if k is even, and
even numbers is k is odd). Now the number of first choices is 10, so the total number of
choices is 10× 5 = 50.
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3. This is similar to the proof for Step 1 in Exercise 5.3.14 from Cunningham given
previously. Let A0, A1, ... be the countable family of sets such that |Ak| = |R| for all
k, and let gk : Ak → R be a 1–1 correspondence. We shall denote the union of the Ak

by A. Define a mapping h : N × R → A by h(n, r) = g−1n (r). This map is onto by
construction, and therefore we have |A| ≤ |N × R|. Since N × R ⊂ R × R we must have
|N × R| ≤ |N × R| = |R| and therefore |A| ≤ |R|. Going the other direction, we have
|R| = |A0| ≤ |A|. The result now follows from the Schröder-Bernstein Theorem.

4. Define f : X t Y → X ∪ Y by the formulas f(x, 1) = x and f(y, 2) = y. By
construction f is onto, and its restriction to either X×{1} or Y ×{2} is also 1–1. Therefore
the only way that two elements of XtY can go to the same thing in X∪Y is if an element
in X × {1} and an element in Y × {2} have the same image in X ∪ Y . By definition this
can only happen if the image element is in X ∩Y . Since the latter is empty, it follows that
no such pair of elements can exist. Therefore the mapping f is both 1–1 and onto.

5. If b ∈ f [A] choose g(b) = a such that f(a) = b. If b 6∈ f [A] choose g(b) to be some
arbitrary element a0 ∈ A. Then f og of(a) = f(a′) where a′ ∈ A is some element such that
f(a′) = b. Therefore we have f(a) = b = f og of(a).
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