Math 144
Fall 2022

SOLUTIONS FOR WEEK 06 EXERCISES

Cunningham, Exercises 5.1

8.  The map is 1-1 by the Fundamental Theorem of Arithmetic, which states that the
factorization of a positive integer into a product of primes is unique up to rearrangement
of factors. Suppose now that i < m and j < n and either i < m or j < n (this is stronger
than the hypotheses in Cunningham). Then 2¢ < 2™ and 37 < 3", with either 2¢ < 2™
and 37 < 3™. In both of the latter cases we have 237 < 23" .»

12.  Suppose that A — B is finite. Then A = BU (A — B) where both B and A — B are
finite. It follows that A is also finite, contradicting our assumption that A is infinite. The
source of the problem is our assumption that A — B is finite, and therefore A — B must be
infinite.m

16. If f:{1,...,n} — A is onto, then by the Cross Section Property we know that
Al < |{1,..,n}|=nmn

Cunningham, Exercises 5.2

7. Since A and B are countable sets, there are 1-1 maps f: A - Nand g : B — N.
Define f x g : Ax B —- N x N by f x g(a,b) = (f(a), g(b)). This map is 1-1, for
f xg(a,b) = f x g(a’,V') implies f(a) = f(a’) and g(b) = g(b'). Since f and g are both
1-1, we have a = @’ and b =¥, so that (a,b) = (a’, V).

By definition we have |A x B| < [N x N|, and since |[N x N| = |N| it follows that

14. Follow the hints. Note: This exercise uses material from Lecture 13 in Week 07
and it might have been better to place in the exercises07.pdf file.

Step 1. — A countable union of countable sets is countable. — PROOF: Let
Ap, A1, ... be the countable family of countable sets, and suppose that A; = {a; 0, @i 1 ... }.
Let D C N x N be the set of all (¢, j) such that a; ; is defined (note that the collection of
sets might be finite or there might be finite sets in the collection, in which case a; ; might
not be definable). Let av: D — U = J; A; be the map a(i, j) = a; ;. By construction this
map is onto.

Since D C N x N and the latter is countable, we know that D is countable. By the
Cross Section Property we have |U| < |D|, which means that U must also be countable.n



Step 2. — The set A, of polynomials of degree n is countable if n > 0, and
likewise for the set Ay of constant polynomials (there are reasons for and against taking
the degree of the zero polynomial to be 0, and this avoids such arguments). — PROOF:
The polynomials of degree n are in 1-1 correspondence with a subset of Z" ", where we
define the latter recursively by Z? = Z x Z and Z¥ ™' = Z* x Z; it turns out that |Z"| = |N]|
(see lecturel3.pdf for more on this; one can derive this result in a manner similar to the
proof that |R"| = |R|). More precisely, if the polynomial is a,t™ + ... + a1t + ag, map it
to the coefficient sequence (an, ... ,ag). We then have |A,| < |Z""| = |N|. On the other
hand, there are infinitely many choices for the leading term of the polynomial, so we also
have |N| < |A,,|. We can now apply the Schréder-Bernstein Theorem to conclude that A,
is countable.n

Final Step. =~ We have decomposed the algebra of polynomials Z[t] into a countable
union |J,, Ap, and in Step 2 we showed that each of the sets A,, is countable. We cann
now apply Step 1 to conclude that their union, which is the entire polynomial algebra, is
also countable.m

Cunningham, Exercises 5.3

1. Since B is nonempty there is some by € B. If we define By : A — A x B to be the
slice embedding SBy(a) = (a,bg), then Sy is 1-1. Therefore we have |A| < |A x B|. Since
we also have |N| < |A], this implies |N| < |A x B|.=

2.  Suppose that A — B is countable. We know that A = (AN B)U (A — B). Since B is
countable and AN B C B, it follows that A N B is also countable, and therefore the first
two sentences imply that A is a union of two countable sets and hence is countable. This
contradicts the assumption that A is not countable; the source of the contradiction is our
assuming that A — B was countable, so this must be false and A — B must be uncountable.n

3. This is a special case of the preceding exercise with A =R and B = Q.=

4. If B were countable, then A C B would imply |A| < |B| < |N|, so that A would
also be countable. Since A is not countable by assumption, it follows that B must also be
uncountable.m

7. For each b € B let C, : A — B be the constant function whose value is always
b. Then x # y implies that the images of C, and C, are nonempty and disjoint, and
therefore C, # Cy. This means that |B| < |F(A, B)|. Since B is uncountable, it follows
that F(A, B) is also uncountable.m

Cunningham, Exercises 5.4

1. Let f(z) =2+ 3z; we need only verify that f is 1-1 and onto, and we can do this by
finding an inverse function. If we solve y = 2 4 3z for =, we obtain the formula



and direct calculation yields f~lef(z) = z and fef~!(y) = y for all x and y in the
respective open intervals. Therefore we have a 1-1 correspondence from the open interval
A = (0,1) to the open interval B = (2,5) and consequently we have |A| = |B|.=

12.  Previously we showed that the function

defines a 1-1 correspondence from R to the open interval (—1,1). If we compose this
with the inclusion (—1,1) — [—m, ) we see that |R| < the cardinality of [—7, 7). On the
other hand, if we consider the inclusion [—m,7) C R we obtain the reverse inequality of
cardinal numbers. Therefore we can apply the Schroder-Bernstein Theorem to conclude
that [—m, 7) and R have the same cardinal number.=

16.  The hypotheses imply that |A| < |B| < |C] = |A|, so that |A| < |B| and vice versa.
Apply the Schroder-Bernstein Theorem to conclude that |A| = |B|.=

19. The mapping h is 1-1, for h(a,b) = h(da’,V’) implies f(a) = f(a’) and g(b) = g(V'),
which in turn imply a = o’ and b = ¥/, so that (a,b) = (a’,b"). Given (¢,d) € K x L we
also know that ¢ = f(a) and d = g(b) for suitable a and b, and all this translates into the
equation (¢, d) = h(a,b), showing that h is also onto.s

34. If we can show that R and the interval (0, 1) have the same cardinality, then by the
preceding Exercise 19 and |R x R| = |R| we can conclude that (0,1)? and (0, 1) have the
same cardinal number. As noted before, we have constructed a specific 1-1 correspondence
from R to the interval (—1,1), so it is enough to construct a 1-1 correspondence from the
latter to the interval (0,1). Once again we can do this by means of a linear function which
sends —1 to 0 and 1 to itself (see the first exercise from this section). The explicit formula
is f(x)=1(z+1)=

The remaining exercises in exercises06.pdf

1. Follow the hint and define C' to be all integers of the form n + b where b € B. Then
C' is a nonempty subset of N C Z and as such it has a least element c¢g. We claim that
bp = cop — n is a (acturally, the) least element of B. By construction we have ¢o —n € B
and n + by € C. Given an arbitrary element b € B we have n + b € C, and since cg is
minimal in C it follows that ¢ = n + by < n + b. Subtracting n from each side we have
bo < b and hence by is a minimal element of B.=

2. Suppose that 1 < k < 10. How many pairs of the form (k,m) lie inin the set?
Regardless of whether k is even or odd, there are 5 choices (odd numbers if k is even, and
even numbers is k is odd). Now the number of first choices is 10, so the total number of
choices is 10 x 5 = 50.m



3. This is similar to the proof for Step 1 in Exercise 5.3.14 from Cunningham given
previously. Let Ag, Ajp, ... be the countable family of sets such that |Ax| = |R| for all
k, and let g : Arx — R be a 1-1 correspondence. We shall denote the union of the A
by A. Define a mapping h : N x R — A by h(n,r) = g, '(r). This map is onto by
construction, and therefore we have |A| < [N x R|. Since N x R C R x R we must have
IN x R| < |N x R| = |R| and therefore |A| < |R|. Going the other direction, we have
IR| = |Ao| < |A|. The result now follows from the Schréder-Bernstein Theorem.s

4. Define f : X UY — X UY by the formulas f(z,1) = = and f(y,2) = y. By
construction f is onto, and its restriction to either X x {1} or Y x {2} is also 1-1. Therefore
the only way that two elements of X UY can go to the same thing in X UY is if an element
in X x {1} and an element in Y x {2} have the same image in X UY. By definition this
can only happen if the image element is in X NY. Since the latter is empty, it follows that
no such pair of elements can exist. Therefore the mapping f is both 1-1 and onto.m

5. If b € f[A] choose g(b) = a such that f(a) =b. If b ¢ f[A] choose g(b) to be some
arbitrary element ag € A. Then fege f(a) = f(a’) where a’ € A is some element such that
f(a") = b. Therefore we have f(a) =b= fegef(a)m



