SOLUTIONS FOR WEEK 06 EXERCISES

Cunningham, Exercises 5.1

8. The map is $1-1$ by the Fundamental Theorem of Arithmetic, which states that the factorization of a positive integer into a product of primes is unique up to rearrangement of factors. Suppose now that $i \leq m$ and $j \leq n$ and either $i<m$ or $j<n$ (this is stronger than the hypotheses in Cunningham). Then $2^{i} \leq 2^{m}$ and $3^{j} \leq 3^{n}$, with either $2^{i}<2^{m}$ and $3^{j}<3^{n}$. In both of the latter cases we have $2^{i} 3^{j}<2^{m} 3^{n}$.-
9. Suppose that $A-B$ is finite. Then $A=B \cup(A-B)$ where both B and $A-B$ are finite. It follows that A is also finite, contradicting our assumption that A is infinite. The source of the problem is our assumption that $A-B$ is finite, and therefore $A-B$ must be infinite..
10. If $f:\{1, \ldots, n\} \rightarrow A$ is onto, then by the Cross Section Property we know that $|A| \leq|\{1, \ldots, n\}|=n . ■$

Cunningham, Exercises 5.2

7. Since A and B are countable sets, there are $1-1$ maps $f: A \rightarrow \mathbb{N}$ and $g: B \rightarrow \mathbb{N}$. Define $f \times g: A \times B \rightarrow \mathbb{N} \times \mathbb{N}$ by $f \times g(a, b)=(f(a), g(b))$. This map is $1-1$, for $f \times g(a, b)=f \times g\left(a^{\prime}, b^{\prime}\right)$ implies $f(a)=f\left(a^{\prime}\right)$ and $g(b)=g\left(b^{\prime}\right)$. Since f and g are both $1-1$, we have $a=a^{\prime}$ and $b=b^{\prime}$, so that $(a, b)=\left(a^{\prime}, b^{\prime}\right)$.

By definition we have $|A \times B| \leq|\mathbb{N} \times \mathbb{N}|$, and since $|\mathbb{N} \times \mathbb{N}|=|\mathbb{N}|$ it follows that $|A \times B| \leq|\mathbb{N}|$. .
14. Follow the hints. Note: This exercise uses material from Lecture 13 in Week 07 and it might have been better to place in the exercises07.pdf file.

Step 1. - A countable union of countable sets is countable. - PROOF: Let A_{0}, A_{1}, \ldots be the countable family of countable sets, and suppose that $A_{i}=\left\{a_{i, 0}, a_{i, 1} \ldots\right\}$. Let $D \subset \mathbb{N} \times \mathbb{N}$ be the set of all (i, j) such that $a_{i, j}$ is defined (note that the collection of sets might be finite or there might be finite sets in the collection, in which case $a_{i, j}$ might not be definable). Let $\alpha: D \rightarrow U=\bigcup_{i} A_{i}$ be the map $\alpha(i, j)=a_{i, j}$. By construction this map is onto.

Since $D \subset \mathbb{N} \times \mathbb{N}$ and the latter is countable, we know that D is countable. By the Cross Section Property we have $|U| \leq|D|$, which means that U must also be countable. \quad

Step 2. - The set Δ_{n} of polynomials of degree n is countable if $n>0$, and likewise for the set Δ_{0} of constant polynomials (there are reasons for and against taking the degree of the zero polynomial to be 0 , and this avoids such arguments). - PROOF: The polynomials of degree n are in 1-1 correspondence with a subset of \mathbb{Z}^{n+1}, where we define the latter recursively by $\mathbb{Z}^{2}=\mathbb{Z} \times \mathbb{Z}$ and $\mathbb{Z}^{k+1}=\mathbb{Z}^{k} \times \mathbb{Z}$; it turns out that $\left|\mathbb{Z}^{n}\right|=|\mathbb{N}|$ (see lecture13.pdf for more on this; one can derive this result in a manner similar to the proof that $\left.\left|\mathbb{R}^{n}\right|=|\mathbb{R}|\right)$. More precisely, if the polynomial is $a_{n} t^{n}+\ldots+a_{1} t+a_{0}$, map it to the coefficient sequence (a_{n}, \ldots, a_{0}). We then have $\left|\Delta_{n}\right| \leq\left|\mathbb{Z}^{n+1}\right|=|\mathbb{N}|$. On the other hand, there are infinitely many choices for the leading term of the polynomial, so we also have $|\mathbb{N}| \leq\left|\Delta_{n}\right|$. We can now apply the Schröder-Bernstein Theorem to conclude that Δ_{n} is countable.

Final Step. We have decomposed the algebra of polynomials $\mathbb{Z}[t]$ into a countable union $\bigcup_{n} \Delta_{n}$, and in Step 2 we showed that each of the sets Δ_{n} is countable. We cann now apply Step 1 to conclude that their union, which is the entire polynomial algebra, is also countable..

Cunningham, Exercises 5.3

1. Since B is nonempty there is some $b_{0} \in B$. If we define $\beta_{0}: A \rightarrow A \times B$ to be the slice embedding $\beta_{0}(a)=\left(a, b_{0}\right)$, then β_{0} is $1-1$. Therefore we have $|A| \leq|A \times B|$. Since we also have $|\mathbb{N}|<|A|$, this implies $|\mathbb{N}|<|A \times B|$.-
2. Suppose that $A-B$ is countable. We know that $A=(A \cap B) \cup(A-B)$. Since B is countable and $A \cap B \subset B$, it follows that $A \cap B$ is also countable, and therefore the first two sentences imply that A is a union of two countable sets and hence is countable. This contradicts the assumption that A is not countable; the source of the contradiction is our assuming that $A-B$ was countable, so this must be false and $A-B$ must be uncountable.
3. This is a special case of the preceding exercise with $A=\mathbb{R}$ and $B=\mathbb{Q} . \boldsymbol{\square}$
4. If B were countable, then $A \subset B$ would imply $|A| \leq|B| \leq|\mathbb{N}|$, so that A would also be countable. Since A is not countable by assumption, it follows that B must also be uncountable.
5. For each $b \in B$ let $C_{b}: A \rightarrow B$ be the constant function whose value is always b. Then $x \neq y$ implies that the images of C_{x} and C_{y} are nonempty and disjoint, and therefore $C_{x} \neq C_{y}$. This means that $|B| \leq|\mathbf{F}(A, B)|$. Since B is uncountable, it follows that $\mathbf{F}(A, B)$ is also uncountable.

Cunningham, Exercises 5.4

1. Let $f(x)=2+3 x$; we need only verify that f is $1-1$ and onto, and we can do this by finding an inverse function. If we solve $y=2+3 x$ for x, we obtain the formula

$$
f^{-1}(y)=x=\frac{y-2}{3}
$$

and direct calculation yields $f^{-1} \circ f(x)=x$ and $f^{\circ} f^{-1}(y)=y$ for all x and y in the respective open intervals. Therefore we have a $1-1$ correspondence from the open interval $A=(0,1)$ to the open interval $B=(2,5)$ and consequently we have $|A|=|B|$..
12. Previously we showed that the function

$$
f(x)=\frac{x}{1+|x|}
$$

defines a $1-1$ correspondence from \mathbb{R} to the open interval $(-1,1)$. If we compose this with the inclusion $(-1,1) \rightarrow[-\pi, \pi)$ we see that $|\mathbb{R}| \leq$ the cardinality of $[-\pi, \pi)$. On the other hand, if we consider the inclusion $[-\pi, \pi) \subset \mathbb{R}$ we obtain the reverse inequality of cardinal numbers. Therefore we can apply the Schröder-Bernstein Theorem to conclude that $[-\pi, \pi)$ and \mathbb{R} have the same cardinal number.
16. The hypotheses imply that $|A| \leq|B| \leq|C|=|A|$, so that $|A| \leq|B|$ and vice versa. Apply the Schröder-Bernstein Theorem to conclude that $|A|=|B|$.■
19. The mapping h is $1-1$, for $h(a, b)=h\left(a^{\prime}, b^{\prime}\right)$ implies $f(a)=f\left(a^{\prime}\right)$ and $g(b)=g\left(b^{\prime}\right)$, which in turn imply $a=a^{\prime}$ and $b=b^{\prime}$, so that $(a, b)=\left(a^{\prime}, b^{\prime}\right)$. Given $(c, d) \in K \times L$ we also know that $c=f(a)$ and $d=g(b)$ for suitable a and b, and all this translates into the equation $(c, d)=h(a, b)$, showing that h is also onto..
34. If we can show that \mathbb{R} and the interval $(0,1)$ have the same cardinality, then by the preceding Exercise 19 and $|\mathbb{R} \times \mathbb{R}|=|\mathbb{R}|$ we can conclude that $(0,1)^{2}$ and $(0,1)$ have the same cardinal number. As noted before, we have constructed a specific 1-1 correspondence from \mathbb{R} to the interval $(-1,1)$, so it is enough to construct a $1-1$ correspondence from the latter to the interval $(0,1)$. Once again we can do this by means of a linear function which sends -1 to 0 and 1 to itself (see the first exercise from this section). The explicit formula is $f(x)=\frac{1}{2}(x+1)$..

The remaining exercises in exercises06.pdf

1. Follow the hint and define C to be all integers of the form $n+b$ where $b \in B$. Then C is a nonempty subset of $\mathbb{N} \subset \mathbb{Z}$ and as such it has a least element c_{0}. We claim that $b_{0}=c_{0}-n$ is a (acturally, the) least element of B. By construction we have $c_{0}-n \in B$ and $n+b_{0} \in C$. Given an arbitrary element $b \in B$ we have $n+b \in C$, and since c_{0} is minimal in C it follows that $c_{0}=n+b_{0} \leq n+b$. Subtracting n from each side we have $b_{0} \leq b$ and hence b_{0} is a minimal element of $B . ■$
2. Suppose that $1 \leq k \leq 10$. How many pairs of the form (k, m) lie inin the set? Regardless of whether k is even or odd, there are 5 choices (odd numbers if k is even, and even numbers is k is odd). Now the number of first choices is 10 , so the total number of choices is $10 \times 5=50$.
3. This is similar to the proof for Step 1 in Exercise 5.3.14 from Cunningham given previously. Let A_{0}, A_{1}, \ldots be the countable family of sets such that $\left|A_{k}\right|=|\mathbb{R}|$ for all k, and let $g_{k}: A_{k} \rightarrow \mathbb{R}$ be a 1-1 correspondence. We shall denote the union of the A_{k} by A. Define a mapping $h: \mathbb{N} \times \mathbb{R} \rightarrow A$ by $h(n, r)=g_{n}^{-1}(r)$. This map is onto by construction, and therefore we have $|A| \leq|\mathbb{N} \times \mathbb{R}|$. Since $\mathbb{N} \times \mathbb{R} \subset \mathbb{R} \times \mathbb{R}$ we must have $|\mathbb{N} \times \mathbb{R}| \leq|\mathbb{N} \times \mathbb{R}|=|\mathbb{R}|$ and therefore $|A| \leq|\mathbb{R}|$. Going the other direction, we have $|\mathbb{R}|=\left|A_{0}\right| \leq|A|$. The result now follows from the Schröder-Bernstein Theorem.■
4. Define $f: X \sqcup Y \rightarrow X \cup Y$ by the formulas $f(x, 1)=x$ and $f(y, 2)=y$. By construction f is onto, and its restriction to either $X \times\{1\}$ or $Y \times\{2\}$ is also 1-1. Therefore the only way that two elements of $X \sqcup Y$ can go to the same thing in $X \cup Y$ is if an element in $X \times\{1\}$ and an element in $Y \times\{2\}$ have the same image in $X \cup Y$. By definition this can only happen if the image element is in $X \cap Y$. Since the latter is empty, it follows that no such pair of elements can exist. Therefore the mapping f is both $1-1$ and onto.
5. If $b \in f[A]$ choose $g(b)=a$ such that $f(a)=b$. If $b \notin f[A]$ choose $g(b)$ to be some arbitrary element $a_{0} \in A$. Then $f \circ g \circ f(a)=f\left(a^{\prime}\right)$ where $a^{\prime} \in A$ is some element such that $f\left(a^{\prime}\right)=b$. Therefore we have $f(a)=b=f \circ g \circ f(a)$.
