EXERCISES FOR WEEK 07

0. Work the following problems from Cunningham:

Exercises 4.3 (pp. 101-102): $9-11$ [Notes: Nonnegative exponents are given recursively by the identities $x^{0}=1$ and $x^{k+1}=x^{k} x$. Prove the stated Laws of Exponents by induction on k. As in exercises06.pdf, take ω to be \mathbb{N}.]

Exercises 5.1 (pp. 115-117): 19
Exercises 5.2 (pp. 122-124): 9, 15
Exercises 5.4 (pp. 138-141): $28-30$
Exercises 6.1 (pp. 144-145): 6

1. Let $\mathcal{F}(\mathbb{R})$ be the set of all finite subsets of \mathbb{R}. Prove that $|\mathcal{F}(\mathbb{R})|=|\mathbb{R}|$. [Hint: The solution to one problem from exercises06.pdf will be useful.]
2. The number $n!$ (n factorial), which is the number of permutations of the first n positive integers, is defined recursively by $0!=1$ and $n!=n \cdot(n-1)$! for all $n>0$. Prove that $n!\leq n^{n}$ for all $n>0$ and strict inequality holds if $n>1$.
3. Verify that for all positive integers n we have

$$
\sum_{k=1}^{n} \frac{1}{k^{2}+k}=\frac{n}{n+1}
$$

4. Let A be a finite set (our "alphabet"). Then the set $\operatorname{String}(A)$ of finite strings over A is given by the union

$$
\bigcup_{n=1}^{\infty} A^{n} \times\{n\}
$$

where A^{n} denotes the n-fold product of A with itself and $\{n\}$ is appended to ensure that the copies of A^{m} and A^{n} are disjoint if $m \neq n$. Prove that $\operatorname{String}(A)$ is countably infinite.
5. Use the Strong Principle of Finite Induction as in strong-induction1.pdf to prove that every integer $n>23$ can be written as a sum $5 a+7 b$ for suitable nonnegative integers a and b. Also show that 23 cannot be written in this form.

