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L13 
 

Finite induction; Big products and sums 
 

Near the end of the previous lecture we noted that the cardinal numbers of the points on 

the plane and the points on a line are equal.  It is natural to ask whether the number of 

points in  3 – dimensional coordinate space is also equal to the number of points on a 

line, and likewise for the number of points in  n – dimensional coordinate space.  The 
proof of this will use a fundamental mathematical technique called proof by (finite) 

induction.   
 

Before doing anything further, we need to define a notion of Cartesian product of a finite 

indexed collection  X1, … , Xn  of sets.  We already know how to do this if  n  =  2,  
and the general definition is recursive. 
 

Definition.  Given  X1, … , Xn  as above,  the Cartesian product   X1 ×××× … ×××× Xn  is 

defined recursively for  n  >  2  by  (X1 ×××× … ×××× Xn – 1) ×××× Xn . 
 

We want this construction to have the following property: 
 

Proposition (Coordinatewise equality property).   Every element of an  n – fold 

product  X1 ×××× … ×××× Xn  is given by an ordered list  (x1, … , xn)  where   x j  ∈∈∈∈ X j  for all 

j  from  1  to  n.    Two ordered lists  x  =  (x1, … , xn)  and   y  =  (y 1, … , y n)   

define the same element of the product if and only if  x j  =  y j  for all  j . 
 

PROOF WHEN  n  =  3.     Since   X1 ×××× X2 ×××× X3  =  (X1 ×××× X2 ) ×××× X3 by definition, every 

point in the set can be uniquely written as an ordered pair (w, z)  where  w  ∈∈∈∈ X 1 ×××× X2  

and  z  ∈∈∈∈ X 3  are uniquely determined.   But every element  w  of   X1 ×××× X2  can be 

uniquely expressed as an ordered pair  (x, y)  where  x  ∈∈∈∈ X 1  and  y  ∈∈∈∈ X 2 .  

Therefore we have obtained an ordered triple of elements  x  ∈∈∈∈ X 1 ,   y  ∈∈∈∈ X 2 ,  and   

z  ∈∈∈∈ X 3  .     To see that these coordinates are uniquely determined, suppose we have  

((x, y), z)   =   ((a, b), c ).   The properties of a (2 – fold) Cartesian first product imply 

that  (x, y)  =  (a, b)  and  z  =  c ,  and similarly  (x, y)  =  (a, b)  implies that  x  =  a  

and  y  =  b .  

 

Corollary.  The cardinalities of  RRRR  and  RRRR
 3  =  RRRR    ×××× RRRR x RRRR  are equal.  

 

Proof.      We know that there is a 1 – 1 onto map  h  from  RRRR    ×××× RRRR  to  RRRR.   We claim 

that the function k (x, y, z)  =  h(h(x, y), z)  is also a 1 – 1 onto mapping.  To see that  
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k  is 1 – 1,  suppose that  k (x, y, z)  =  k (x ′′′′, y ′′′′, z ′′′′).     Since  h  is 1 – 1,   we first 

know that  h(x, y)  =  h(x ′′′′, y ′′′′)  and  z  =  z ′′′′,  and from these we know that  x =  x ′′′′  

and  y =  y ′′′′.   To see that  k  is onto,  we first know that every  a  ∈∈∈∈ RRRR  is  h(w, z) for 

some  w  and  z  in  RRRR, and similarly  w  = h(x, y) for some x, y ∈∈∈∈ RRRR.  Combining 

these, we have  a  =  h(w, z)  =  h(h(x, y), z)  =  k(x, y, z) for some x,  y and  z.  

 

One can proceed similarly, using the 3 – fold case to derive the  4 – fold case, then 

using the 4 – fold case to derive the  5 – fold case, and so on.   Such patterns arise 
repeatedly in the mathematical sciences, and they me be treated in a unified manner as 

follows: 
 
WEAK PRINCIPLE OF FINITE INDUCTION.  Suppose that we are given a sequence of 

statements  Sn  where  n  runs through all positive integers, and assume also that the 

following hold :  
 

1. Statement  S1  is true. 
 

2. For all n ∈∈∈∈ NNNN +, if Statement  Sn  is true then Statement  Sn + 1  is also true. 
 

Then all of the statements  Sn  are true. 
 

JUSTIFICATION.   If not all of the statements are true, then there is a least positive 

integer  m  such that  Sm  is false;  such an integer must exist because the set of 

positive integers is well – ordered.   By the first condition on the sequence  { Sn }, we 

know that  m  >  1.   Since  m  is minimal and  m  >  1,  we know that  m – 1  ≥  1  and 

therefore Sm – 1  must be true.  By the second condition on the sequence  { Sn }, the 

truth of  Sm – 1  implies that  Sm  is also true.  However, we assumed that  Sm  was false, 
so this yields a contradiction.  The source of the contradiction was the assumption that 

some Statement  Sn  was false, so we are forced to conclude that all the statements Sn 

are true.  

 

In many cases the the indexing variable  n  for  Sn  may range over all integers greater 

than or equal to some fixed nonnegative integer M  (for example,  M  =  0).  The 

principle also holds in these instances because the set of integers  ≥  M  is also well – 

ordered;  the only change is the need to assume that the initial statement  SM is true. 
 
NOTE.  The similarity between the phrases “mathematical induction” and “inductive 

reasoning” may suggest that the first concept is a form of the second, but this is not 

the case.    Inductive reasoning is certainly different from deductive reasoning,  but 
mathematical induction is actually a form of deductive reasoning.  
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Formally, the difference between mathematical induction and inductive reasoning sis 

that the latter would check the first few statements, say  S1,  S2,  S3,  S4,    and then 

conclude that Sn holds for all  n.  The crucial inductive step, “Sn  implies  Sn + 1,”  is 

missing.  Needless to say, inductive reasoning does not constitute a proof in the strict 

sense of deductive logic.   
  

Visual Model.  In effect,  mathematical induction allows one to prove an infinite list 

of statements, say  S1,  S2,  S3,  ....  ,  with an argument that has only finitely many 

steps.   It may be helpful to visualize this in terms of the domino effect; if you have a 

long row of dominoes standing on end, you can be sure of two things: 
 

1. The first domino can be pushed over. 
 

2. Whenever a domino falls, then its next neighbor will also fall.  
 

Under these conditions, we know that  each one of the dominos in the long row will 

eventually fall  if the first one is nudged down in the right direction.  
 

Classical Example.  Let  Sn  be the familiar formula for the sum of the first  n  odd 

positive integers:   
 

1  +  3  +  5 +  ...  +  (2n – 1)    =    n
 2 

 

In this case the first statement  S1 is  1   =   1 

2
, the statement  S2  is  1 + 3   =   2 

2
,  

the statement  S3  is  1 + 3 + 3   =   3 

2
, and so on.  The proof by mathematical 

induction has two basic steps: 
 

Proving that the first statement  S1  is true. 
 

Proving that for each value of  n  such that  n  ≥  1, if  Sn  is true, then so is the 

next statement  Sn + 1 . 
  

Proof of the example by induction.    The statement   S1  is simply  1   =   1 

2
,   and 

hence it is obviously true.    Let’s assume we know that  Sn  is also true for an arbitrary  

n  ≥  1,   so that we have the equation  1  +  3  +  5 +  ...  +  (2n – 1)    =    n
 2
.   The 

next step in mathematical induction is to derive Sn + 1   from  Sn .  To do this, we note that  
 

1 + 3 + ... + (2n – 1) + (2n + 1)   =   [1 + 3 + ... + (2n – 1)]  +  (2n + 1) 

    =   n
 2

  +  (2n + 1) 

    =   (n + 1)
 2

 
 

which shows that  Sn + 1  is also true because  2n + 1   =   2(n + 1) – 1.  Therefore  Sn  

is true for all  n  and we have proven the general formula by mathematical induction.  
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Frequently the verification of the first statement in a proof by induction is fairly easy or 
even trivial, but  it is absolutely essential to include an explicit statement about the 

truth of the initial case, AND ALSO it is important to be sure that the inductive 

step works for every statement in the sequence.  If these are not done, the final 
conclusion may be false and in some cases downright absurd.  

 
Application to finite products 

  
We shall now use the Weak Principle of Finite Induction to prove the statements about 
finite products at the beginning of this lecture. 
 

Proposition (Coordinatewise equality property).   Every element of an  n – fold 

product  X1 ×××× … ×××× Xn  is given by an ordered list  (x1, … , xn)  where   x j  ∈∈∈∈ X j  for all 

j  from  1  to  n.    Two ordered lists  x  =  (x1, … , xn)  and   y  =  (y 1, … , y n)   

define the same element of the product if and only if  x j  =  y j  for all  j . 
 

PROOF.   We already have proofs when  n  =  2 or 3, so let us assume the result is 

true for (n – 1) – fold products where n  >  3 (in fact, the proof also works for  n  =  2 

or 3,  but this need not concern us). 
. 

Since   X1 ×××× … ×××× Xn  =  (X1 ×××× … ×××× Xn – 1) ×××× Xn  by definition, every point in this set 

can be uniquely written as an ordered pair  (w, z)  where  w  ∈∈∈∈ X1 ×××× … ×××× Xn – 1  and   

z  ∈∈∈∈ Xn  are uniquely determined.   But every element  w  of   X1 ×××× … ×××× Xn – 1  can be 

uniquely expressed as an ordered list  (x1, … , xn – 1 )  where   x j  ∈∈∈∈ X j  for all  j  from  

1  to  n – 1.  Therefore we have obtained an ordered list of elements  x j  ∈∈∈∈ X j   (where  

j  <  n)   and   z  ∈∈∈∈ X n  .     To see that these coordinates are uniquely determined, 

suppose we have ( ( x1, … , x n – 1), z)   =   ( ( y1, … , y n – 1), u).   Then we have  z  =  

u  and  ( x1, … , x n – 1)  =  ( y1, … , y n – 1)  by the properties of a (2 – fold) Cartesian 

product and   x j  =  x j  (for  j  <  n) by the inductive hypothesis.  These equations 

combine to show that the corresponding coordinates are equal in the (n – fold) 
Cartesian product .  
  

Corollary.  For all positive integers  n, the cardinalities of  RRRR  and  RRRR 

n
  =  RRRR    ×××× … x RRRR  

(with n  factors) are equal.  
 

PROOF.   This is another proof by induction.  Let  S n  be the statement that the 

cardinalities of   RRRR  and  RRRR 

n
 are equal.  We know that  S n  is true if  n  =  1, 2 or 3.   
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Assume  S n  is true.    Then we have a 1 – 1 onto mapping  f ::    RRRR 

n
  →→→→     RRRR    , and this 

yields a 1 – 1 correspondence  g: RRRR 

n+1
  =      RRRR 

n
 x RRRR  →→→→        RRRR x RRRR  defined by  g(s, t )  =  

( f (w),  t ).   If we compose this with a  1 – 1  correspondence g: RRRR x RRRR  →→→→        RRRR,  the 

resulting composite  h      
oooo g  will be a  1 – 1  correspondence from  RRRR 

n+1
 to  R R R R     and 

hence all of the statements  S n  are true by finite induction.  

 
Example. (Somewhat more difficult than the others).   Consider the following 
defective “ proof ” that a nonempty finite set contains as many elements as one of its 

proper subsets.  This statement is vacuously true for the empty set, so assume it is true 

for a set with  k  elements.  Let  S  be a set with  k + 1  elements; we need to show that 

some proper subset of  S  contains the same number of elements as  S.  Let  T  be 

obtained from  S  by removing one element  x, and let  U  be a proper subset of  T   

such  that  |T|  =  |U|, and let  V  be the proper subset of  S  obtained by adding  x  to 

U.   Since we also know that  |S|  =   |T| + 1  and  |V |  =   |U| + 1  we conclude 

that  |S|  =  |V |.??????????????????????????????????????????  
 

This is obviously an absurd conclusion, so the point here is to ask, “How did this 

happen?”  In fact, the inductive step we have given is valid for all values of  k  

EXCEPT for the case  k  =  0.   When  k  =  0  the argument breaks down because  T  

will be the empty set, so it is not possible to construct the subset  U  by removing an 

element from  T.    
 
There are some instances where one uses a variant of the principle of mathematical 

induction stated above; namely, one replaces the assumption in the second step with a 

stronger hypothesis that  Sm  is true for ALL   m  <  n + 1  and not just for  m  =   n. 
 
STRONG PRINCIPLE OF FINITE INDUCTION.  Suppose that we are given a sequence 

of statements  Sn  where  n  runs through all positive integers, and assume also that the 

following hold :  
 

1. Statement  S1  is true. 
 

2. For all n ∈∈∈∈ NNNN +, if Statement  Sm  is true for  ALL  m  ≤≤≤≤  n  then Statement  Sn + 1  

is also true. 
 

Then all of the statements  Sn  are true. 
 

JUSTIFICATION.   If not all of the statements are true, then there is a least positive 

integer  m  such that  Sm  is false; such an integer must exist because the set of 

positive integers is well – ordered.  By the first condition on the sequence { Sn }, we 

have m – 1  ≥  1  and therefore Sk  must be true for all  k  <  m.  By the second 



6 
 

condition on the sequence  { Sn }, the truth of  Sk  for all  k  <  m  implies that  Sm  is 

also true.  However, we assumed that  Sm  was false, so this yields a contradiction.  

The source of the contradiction was the assumption that some Statement  Sn  was 

false, so we are forced to conclude that all the statements Sn are true.  

  

Example.  Let  A  be one of the standard number systems, and let  A[ t ]  be the 

polynomial algebra of all polynomials  p( t )  =  an t 

n
 + … + a1t + a0 with coefficients in  

A.   We  shall say that the polynomial  p( t )  has  positive degree  if the polynomial is 

not constant, and in this case the degree of the polynomial is the largest value of  n  

such that  an  ≠≠≠≠  0.   We shall also say that a polynomial of positive degree is 

irreducible if it cannot be written as a product of two other polynomials, both of positive 

degree.  Consider the following problem: 
 

Prove that every polynomial of positive degree is a product of irreducible 

polynomials.   
 

In order to avoid semantic difficulties, we shall assume that an irreducible polynomial is 

a product with only one factor (namely, itself).   
 

Proof using the strong principle of finite induction.  Let  Sn  be the statement that 

every polynomial of positive degree  n  is a product of irreducible polynomials.  The first 

thing to do is prove that  S1  is true.   This requires a digression:  The product of a 

polynomial of degree  d  and a polynomial of degree  e  is a polynomial of degree   

d + e;  if  f ( t )  =  ad  t 

d
 +  (termstermstermsterms ofofofof lowerlowerlowerlower degreedegreedegreedegree)  and   g ( t )  =  be  t 

e
 +  (termstermstermsterms 

ofofofof lowerlowerlowerlower degreedegreedegreedegree)  with  ad  and  be  nonzero, then  f ( t ) g ( t )  =  ad be t  

d
 

+
 

e
 +  (termstermstermsterms 

ofofofof lowerlowerlowerlower degreedegreedegreedegree)  and the product  ad be is also nonzero.   All this is relevant to 

proving  S1,  for it implies that the product of two polynomials of positive degree must be 

a polynomial of degree at least  2.  Therefore a polynomial of degree 1  must always be 

irreducible and hence S1  is true. 
 

Assume now that the statements  Sm  are true for all  m  between  1  and n – 1 for 

some n  >  1, and let  p( t )  be a polynomial of degree n.  If a polynomial of degree n is 

irreducible, then by our language convention the conclusion of  Sn  is true for that 

polynomial.  On the other hand, if  p( t )  =  q ( t ) r ( t )  where  q  and  r  have positive 

degrees, then the degrees of q  and  r  must be strictly less than n.   Therefore both q  

and  r  are products of irreducible polynomials, say  q  =  q1 … qa  and r  =  r1 … rb .  

We then have  p  =  q⋅⋅⋅⋅  r  =  q1 … qa r1 … rb  is a factorization of  p  into irreducible 

polynomials, and this completes the proof of all the statements  Sn  by finite induction.    
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NOTE.   The preceding argument does not prove any sort of uniqueness for the 

factorization into irreducible polynomials.  However, for most number systems one does 
have uniqueness by results of C. F. Gauss. 

 
Big product and sum constructions 

 
We would like to give a construction for Cartesian product which is similar to the 

construction of big unions and intersections.  One goal is to have a general construction 

of finite products which does not depend upon insertion of parentheses, avoiding 
questions whether anything would change significantly if we defined a threefold product 

as  A ×××× (B ×××× C) instead of  (A ×××× B) ×××× C.  In some more advanced contexts such 

questions require serious attention, but for our purposes they can be ignored.   
 

Definition.  Let  { Xa | a ∈∈∈∈ A } be an indexed family of nonempty sets.  Then the (big) 

Cartesian product    

� ��
� ∈�

 

 

is a subset of  A ×××× (∪∪∪∪a ∈∈∈∈ A  Xa)  given by all graphs of functions  y : A →→→→  ∪∪∪∪a ∈∈∈∈ A  Xa 

such that  y(a)  ∈∈∈∈  Xa for all  a    ∈∈∈∈  A.  Frequently we shall say that  y(a)  is the  a – 

coordinate  of  y. 
 

The form of the definition was chosen so that if  Wa is a nonempty subset of  Xa  for 

each a    ∈∈∈∈  A  then  ΠΠΠΠa    ∈∈∈∈  A Wa     will be a subset of  ΠΠΠΠa    ∈∈∈∈  A Xa .    
 

Special cases.  If  A = {1, 2}  then the big Cartesian product is all functions  y  from 

{1, 2}  to  X1 ∪∪∪∪ X2 such that  y1 ∈∈∈∈  X1 and  y2 ∈∈∈∈  X2.  Thus for nearly all practical 

purposes the big Cartesian product behaves like the previously defined (ordinary 

twofold) Cartesian product; however, one this is not the mathematical definition of a 
twofold Cartesian product because the concept of a function was described in terms of 

the twofold product.   When  A = {1, 2, 3}  the big Cartesian product is all functions  

y:{1, 2, 3} →→→→  X1 ∪∪∪∪ X2 ∪∪∪∪ X3  such that  y1 ∈∈∈∈  X1,  y2 ∈∈∈∈  X2  and  y3 ∈∈∈∈  X3. 
 
The big Cartesian product has the following property analogous to the twofold and finite 

Cartesian products: 
 

Proposition.  In the setting above, suppose that  y and  z  belong to  ΠΠΠΠ Xa .  Then  y =  

z  if and only  if  y    ββββ  =  z    ββββ  for all  ββββ ∈∈∈∈ A. 
 

This follows because  y  and  z  are defined as functions with domain A.  
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In a previoius lecture we defined a disjoint union (or disjoint sum)  A ⊔⊔⊔⊔ B  of two sets 

A  and  B.  There is also a corresponding notion of big disjoint sum for an indexed 

family { Xa | a ∈∈∈∈ A }. 

Definition.  Let  { Xa | a ∈∈∈∈ A } be an indexed family of nonempty sets.  Then the (big) 

disjoint sum    

� ��
� ∈�

 

 

is a subset of  (∪∪∪∪a ∈∈∈∈ A  Xa) ××××  A  given by the union of the subsets  Xa ×××× {a} where  a   

runs through all the elements of  A.  The large symbol at the left is an upside down 

capital Greek Pi; the reason for this notation is that the Cartesian product and disjoint 

union are complementary (or dual) to each other in some abstract sense. 
 

By construction the disjoint sum contains a copy of  Xa  for each a , and if a  ≠≠≠≠   b  then 

the copies of  Xa  and Xb  are disjoint (since the second coordinates differ) .   
 

Note that if A = {1, 2}  then this definition reduces to the previous definition of the 

twofold disjoint union  X1 ⊔⊔⊔⊔ X2 .  
 

 

 

 

 

 

    


