SOLUTIONS FOR WEEK 07 EXERCISES

Cunningham, Exercises 4.3

Recall our recursive definition: $x^0 = 1$ and $x^{k+1} = x^k x$

- **9.** We shall prove $m^n \cdot m^k = m^{n+k}$ by induction on k. If k = 1 this is trivial since $m^{k+0} = m = m^k \cdot 1 = m^k \cdot m^0$. Suppose we know that $m^n \cdot m^k = m^{n+k}$ where $k \ge 0$. Then $m^n \cdot m^{k+1} = m^n \cdot m^k \cdot m = m^{n+k} \cdot m$ (the last equation by the induction hypothesis), and the final term is equal to $m^{n+k+1} = m^{n+(k+1)}$ by the recursive definition.
- **10.** We shall prove $(mn)^k = m^k \cdot n^k$ by induction on k. If k = 0 this reduces to $(1 \cdot 1)^0 = 1^0 = 1 = 1 \cdot 1 = 1^0 \cdot 1^0$, and if k = 1 this is even more obvious since $x^1 = x$ for all x. Suppose we know that $(mn)^k = m^k \cdot n^k$ for some $k \ge 0$. Then $(mn)^{k+1} = (mn)^k \cdot mn$ by the recursive definition. Applying the previous exercise, we see that this expression is equal to $m^k \cdot n^k \cdot m \cdot n$, and rearranging terms shows the latter is equal to $m^k \cdot m \times n^k \cdot n = m^{k+1} \cdot n^{k+1}$, where the right hand side is obtained from the recursive definition.
- 11. We shall prove $(m^n)^k = m^{nk}$ by induction on $k \ge 1$. If k = 1 then both the left and right hand sides of the equation reduce to m^n , so the statement is true for k = 1 (if k = 0 both sides are equal to 1, so this case is also no problem). Assume the equation holds for k > 1, and consider $(m^n)^{k+1}$.

By the definition of nonnegative integral exponents we have

$$(m^n)^{k+1} = (m^n)^k \cdot m^n$$

and by the induction hypothesis we know that $(m^n)^k = m^{nk}$. Therefore the right hand side of the displayed equation reduces to $m^{nk} \cdot m^n$, and by Exercise 9 above this reduces further to $m^{nk+n} = m^{n(k+1)}$, completing the proof of the inductive step.

Cunningham, Exercises 5.1

19. Let $V_k = \bigcup_{i \leq k} A_i$. Then $V_1 = A_1$ and hence V_k is finite if k = 1. To complete the proof by induction, we want to show that if V_k is finite and $1 \leq k < n$ then so is V_{k+1} . By definition we have $V_{k+1} = V_k \cup A_{k+1}$ where A_{k+1} is assumed to be finite and V_k is finite by the induction hypothesis. These and the formula for the number of elements in a union of two finite sets imply that V_{k+1} is finite, completing the proof of the inductive step. When we reach k+1=n, we have shown that the whole union is finite.

Cunningham, Exercises 5.2

- **9.** By assumption there is a 1–1 mapping $f: A \to \mathbb{N}$. Pick some $a_0 \in A$ (we can do this because $A \neq \emptyset$. Define a mapping $g: \mathbb{N} \to A$ as follows: If a = f(m) for some m, then m is unique because f is 1–1, so we can define g(m) = a. If m is not in the image of f let $g(m) = a_0$. We then have $g \circ f(a) = a$ for all $a \in A$, so that every $a \in A$ lies in the image of g. Therefore g is onto.
- 15. By Exercise 14, which was assigned in exercises06.pdf, we know that the set of all nonconstant polynomials with integral coefficients is countable. Write these polynomials out in a sequence $p_1(t), p_2(t), ...$ and for each k let W_k denote all the (real or complex) real roots of $p_k(t)$. Each of the sets W_k is finite (and the number of elements is at most the degree of P_k), so we have described the set of algebraic numbers as a countable union of finite sets. As in the solution to the previously cited exercise, such a union is countable, and it follows that the set of all algebraic (real or complex) numbers must also be countable.

Cunningham, Exercises 5.4

- 28. By a previous exercise we know that there are 1–2 correspondences from $A \sqcup B$ to $A \cup B$ and from $K \sqcup L$ to $K \cup L$ because $A \cap B = K \cap L = \emptyset$, so it suffices to prove $|A \sqcup B| \leq |K \sqcup L|$. Let $f: A \to K$ and $g: B \to L$ be 1–1 functions. Then one can check directly that $h: A \sqcup B \to K \sqcup L$ defined by h(a,1) = (f(a),1) and h(b,2) = (g(b),2) is 1–1; by checking the second coordinate one sees that a point in $A \times \{1\}$ and a point in $B \times \{2\}$ cannot go to the same point in $K \sqcup L$, and the restrictions of h to both $A \times \{1\}$ and $B \times \{2\}$ are 1–1 by the choices of f and g. Therefore we have $|A \sqcup B| \leq |K \sqcup L|$.
- **29.** Let f and g be as in the previous exercise, and define $h: A \times B \to K \times L$ be the product map h(a,b) = (f(a),g(b)). Then h is 1–1 because h(a,b) = h(a',b;) implies f(a) = f(a') and g(b) = g(b'), and these equations imply a = a' and b = b' since f and g are 1–1. Therefore we have $|A \times B| \leq |K \times L|$.
- **30.** Once again let f and g be as in the preceding two exercises, but now also let $r: K \to A$ be a mapping such that $r \circ f = 1_A$; to construct such a map let $a_0 \in A$ (the latter is nonempty), and define r(x) = a if x = f(a) (there is only one a such that f(a) = x and $r(x) = a_0$ if $x \notin f[A]$; observe that $r \circ f = 1_A$.

We need to construct a 1–1 mapping from $\mathbf{F}(A,B)$ to $\mathbf{F}(K,L)$. First define $C_1:$ $\mathbf{F}(K,B) \to \mathbf{F}(K,L)$ sending $h:K\to B$ to the composite $g\circ h$. This construction is 1–1 for $g\circ h=g\circ h'$ implies $g\circ h(x)=g\circ h'(x)$ for all $x\in K$, and since g is 1–1 it follows that h(x)=h(x') for all x, so that h=h'. Next define h(x)=h(x') for all $x\in K$, and since h(x)=h(x') for all $x\in K$, and since $x\in K$. So that $x\in K$, and since $x\in K$, and since $x\in K$. So that $x\in K$, and since $x\in K$.

$$\varphi = \varphi \circ 1_A = \varphi \circ r \circ f = \varphi' \circ r \circ f = \varphi' \circ 1_A = \varphi'.$$

Since C_1 and C_2 are 1–1, their composite $C_1 \circ C_2 : \mathbf{F}(A, B) \to \mathbf{F}(K, L)$ is also 1–1 and therefore $|\mathbf{F}(A, B)| \leq |\mathbf{F}(K, L)|$.

1. By Exercise 3 from exercises06.pdf we know that if a countable family of subsets $A_n \subset \mathbb{R}$ satisfies $|A_n| = |\mathbb{R}|$ for all n, then the countable union $\bigcup_n A_n$ also has the same cardinality of \mathbb{R} . Split \mathcal{F} into the pairwise disjoint subfamilies \mathcal{F}_n of subsets with n elements, where n runs over all elements of \mathbb{N} . Then $\mathcal{F}_0 = \{\emptyset\}$, and we claim that $|\mathcal{F}_n| = |\mathbb{R}|$ for all n > 0. As usual, we shall use the Schröder-Bernstein Theorem.

If n > 0, define a 1–1 map $h_n : \mathbb{R} \to \mathcal{F}_n$ sending $a \in \mathbb{R}$ to the set $\{a, a+1, ..., a+n-1\}$, which shows that $|\mathbb{R}| \leq |\mathcal{F}_n|$. Next, define a map $k_n : \mathcal{F}_n \to \mathbb{R}^n$ as follows: Put the n elements of a set $B \in \mathcal{F}_n$ in order (with respect to the usual ordering of \mathbb{R}) say $x_1 < ... < x_n$ and let k_n send this set to $(x_1, ... x_n) \in \mathbb{R}^n$. This map is also 1–1, so we have $|\mathcal{F}_n| \leq |\mathbb{R}^n| = |\mathbb{R}|$. We can now apply the Schröder-Bernstein Theorem to conclude that $|\mathcal{F}_n| = |\mathbb{R}|$ for each n > 0 and therefore the set $\mathcal{F}_+ = \bigcup_{n>0} \mathcal{F}_n$ also has the same cardinality as \mathbb{R} by the previously cited Exercise 3.

By consstruction we have $\mathcal{F}=\mathcal{F}_+\cup\mathcal{F}_0$, so we have one more thing to complete. Define a 1–1 mapping from \mathcal{F} to \mathbb{R}^2 sending \mathcal{F}_+ to the line $\mathbb{R}\times\{0\}$ and sending \mathcal{F}_0 to $\{(0,1)\}$. This yields the chain of inequalities $|\mathbb{R}|=|\mathcal{F}_+|\leq |\mathcal{F}|\leq |\mathbb{R}^2|=|\mathbb{R}|$. By the Schröder-Bernstein Theorem this implies that $|\mathcal{F}|=|\mathbb{R}|$.

2. Since it is debatable whether 0^0 can actually be defined, the problem should have been formulated for $n \geq 1$. In any case we know that $1! = 1 = 1^1$ so the statement is true for n = 1. To complete the argument, we need to show that $k! \leq k^k$ implies $(k+1)! < (k+1)^{k+1}$ for all $k \geq 1$.

The inductive step follows from the chain of inequalities

$$(k+1)! = k! \cdot (k+1) \le k^k \cdot (k+1) < (k+1)^k \cdot (k+1) = (k+1)^{k+1}$$
.

On its surface, the reasoning might not seem to fit perfectly because two separate statements are involved; namely, $k! \le k^k$ for $k \ge 1$ and $k! < k^k$ for $k \ge 2$. More precisely, the reasoning for this exercise proceeds as follows: $1! = 1 = 1^1 \implies 2! < 2^2 \implies 2! \le 2^2 \implies 3! < 3^3 \implies 3! \le 3^3 \implies 4! < 4^4 \dots$ etc.

3. Let S_n be the statement

$$\sum_{k=1}^{n} \frac{1}{k^2 + k} = \frac{n}{n+1} .$$

Then one can verify directly that S_1 is true, so to give a proof by mathematical induction we need to show that S_n implies S_{n+1} for all $n \ge 1$. If S_n is true then by the induction hypothesis we have

$$\sum_{k=1}^{n+1} \frac{1}{k^2 + k} = \left(\sum_{k=1}^{n} \frac{1}{k^2 + k}\right) + \frac{1}{(n+1)^2 + (n+1)} = \frac{n}{n+1} + \frac{1}{(n+1)^2 + (n+1)}$$

so the proof reduces to verifying that the right hand side is equal to

$$\frac{n+1}{n+2}$$

Here is the derivation of the identity that we need:

$$\frac{n}{n+1} + \frac{1}{(n+1)^2 + (n+1)} = \frac{n(n+2)}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)} = \frac{(n+1)^2}{(n+1)(n+2)} = \frac{n+1}{n+2}.$$

4. Let W_n (words of length n) be the set $A^n \times \{n\}$. Since A is finite the set W_n is also finite. Therefore **String** (A) is a union of the countable family of sets W_n where n runs through the elements of \mathbb{N} . Since a countable union of countable sets is countable, it follows that A is countable. To see that the set is infinite, consider the set of words formed using only one letter in A:

$$(a, a, \dots, a; n)$$
 where $a \in A$ and $n \in \mathbb{N}_+$

Since this subset of **String** (A) is countably infinite, it follows that **String** (A) itself must be infinite.

5. Let S_n be the statement that n can be written in the form 5a + 7b for suitable nonnegative integers a and b. In order to prove this using the Strong Principle of Finite Induction, we must first verify it for a few values of n > 24:

$$S_{24}:$$
 $24 = 10 + 14 = (5 \cdot 2) + (7 \cdot 2)$
 $S_{25}:$ $25 = (5 \cdot 5)$
 $S_{26}:$ $26 = 5 + 21 = (5 \cdot 1) + (7 \cdot 3)$
 $S_{27}:$ $27 = 20 + 7 = (5 \cdot 4) + (7 \cdot 1)$
 $S_{28}:$ $28 = (7 \cdot 4)$

The inductive step is then given as follows:

For
$$n \geq 29$$
, S_k true for $24 \leq k \leq n-1 \Rightarrow \text{so is } S_n$.

We can prove this as follows: If $n \geq 29$, then $24 \leq n-5 \leq n-1$. Therefore S_{n-5} is true, so that n-5=5c+7b for nonnegative integers b and c. Since we may rewrite this as n=5(c+1)+7b we see that n=5a+7b where both a=c+1 and b are nonnegative integers. Therefore S_n is true, and this completes the proof by the Strong Principle of Finite Induction.

Finally, we need to show that S_{23} is false. Since 23 leaves a remainder of 3 when divided by 5, any expression of the form 23 = 5a + 7b must have b > 0. The only possibilities are b = 1, 2, 3. However, for each of these possibilities we know that 23 - 7b = 16, 9, 2 is not evenly divisible by 5, and therefore we cannot write 23 = 5a + 7b where a and b are nonnegative integers.