SOLUTIONS FOR WEEK 07 EXERCISES

Cunningham, Exercises 4.3

$$
\text { Recall our recursive definition: } x^{0}=1 \text { and } x^{k+1}=x^{k} x
$$

9. We shall prove $m^{n} \cdot m^{k}=m^{n+k}$ by induction on k. If $k=1$ this is trivial since $m^{k+0}=m=m^{k} \cdot 1=m^{k} \cdot m^{0}$. Suppose we know that $m^{n} \cdot m^{k}=m^{n+k}$ where $k \geq 0$. Then $m^{n} \cdot m^{k+1}=m^{n} \cdot m^{k} \cdot m=m^{n+k} \cdot m$ (the last equation by the induction hypothesis), and the final term is equal to $m^{n+k+1}=m^{n+(k+1)}$ by the recursive definition.■
10. We shall prove $(m n)^{k}=m^{k} \cdot n^{k}$ by induction on k. If $k=0$ this reduces to $(1 \cdot 1)^{0}=1^{0}=1=1 \cdot 1=1^{0} \cdot 1^{0}$, and if $k=1$ this is even more obvious since $x^{1}=x$ for all x. Suppose we know that $(m n)^{k}=m^{k} \cdot n^{k}$ for some $k \geq 0$. Then $(m n)^{k+1}=(m n)^{k} \cdot m n$ by the recursive definition. Applying the previous exercise, we see that this expression is equal to $m^{k} \cdot n^{k} \cdot m \cdot n$, and rearranging terms shows the latter is equal to $m^{k} \cdot m \times n^{k} \cdot n=m^{k+1} \cdot n^{k+1}$, where the right hand side is obtained from the recursive definition.-
11. We shall prove $\left(m^{n}\right)^{k}=m^{n k}$ by induction on $k \geq 1$. If $k=1$ then both the left and right hand sides of the equation reduce to m^{n}, so the statement is true for $k=1$ (if $k=0$ both sides are equal to 1 , so this case is also no problem). Assume the equation holds for $k \geq 1$, and consider $\left(m^{n}\right)^{k+1}$.

By the definition of nonnegative integral exponents we have

$$
\left(m^{n}\right)^{k+1}=\left(m^{n}\right)^{k} \cdot m^{n}
$$

and by the induction hypothesis we know that $\left(m^{n}\right)^{k}=m^{n k}$. Therefore the right hand side of the displayed equation reduces to $m^{n k} \cdot m^{n}$, and by Exercise 9 above this reduces further to $m^{n k+n}=m^{n(k+1)}$, completing the proof of the inductive step.■

Cunningham, Exercises 5.1

19. Let $V_{k}=\bigcup_{i \leq k} A_{i}$. Then $V_{1}=A_{1}$ and hence V_{k} is finite if $k=1$. To complete the proof by induction, we want to show that if V_{k} is finite and $1 \leq k<n$ then so is V_{k+1}. By definition we have $V_{k+1}=V_{k} \cup A_{k+1}$ where A_{k+1} is assumed to be finite and V_{k} is finite by the induction hypothesis. These and the formula for the number of elements in a union of two finite sets imply that V_{k+1} is finite, completing the proof of the inductive step. When we reach $k+1=n$, we have shown that the whole union is finite. \quad
20. By assumption there is a $1-1$ mapping $f: A \rightarrow \mathbb{N}$. Pick some $a_{0} \in A$ (we can do this because $A \neq \emptyset$. Define a mapping $g: \mathbb{N} \rightarrow A$ as follows: If $a=f(m)$ for some m, then m is unique because f is $1-1$, so we can define $g(m)=a$. If m is not in the image of f let $g(m)=a_{0}$. We then have $g^{\circ} f(a)=a$ for all $a \in A$, so that every $a \in A$ lies in the image of g. Therefore g is onto.■
21. By Exercise 14, which was assigned in exercises06.pdf, we know that the set of all nonconstant polynomials with integral coefficients is countable. Write these polynomials out in a sequence $p_{1}(t), p_{2}(t), \ldots$ and for each k let W_{k} denote all the (real or complex) real roots of $p_{k}(t)$. Each of the sets W_{k} is finite (and the number of elements is at most the degree of P_{k}), so we have described the set of algebraic numbers as a countable union of finite sets. As in the solution to the previoiusly cited exercise, such a union is countable, and it follows that the set of all algebraic (real or complex) numbers must also be countable.■

Cunningham, Exercises 5.4

28. By a previous exercise we know that there are $1-2$ correspondences from $A \sqcup B$ to $A \cup B$ and from $K \sqcup L$ to $K \cup L$ because $A \cap B=K \cap L=\emptyset$, so it suffices to prove $|A \sqcup B| \leq|K \sqcup L|$. Let $f: A \rightarrow K$ and $g: B \rightarrow L$ be $1-1$ functions. Then one can check directly that $h: A \sqcup B \rightarrow K \sqcup L$ defined by $h(a, 1)=(f(a), 1)$ and $h(b, 2)=(g(b), 2)$ is $1-1$; by checking the second coordinate one sees that a point in $A \times\{1\}$ and a point in $B \times\{2\}$ cannot go to the same point in $K \sqcup L$, and the restrictions of h to both $A \times\{1\}$ and $B \times\{2\}$ are $1-1$ by the choices of f and g. Therefore we have $|A \sqcup B| \leq|K \sqcup L|$..
29. Let f and g be as in the previous exercise, and define $h: A \times B \rightarrow K \times L$ be the product map $h(a, b)=(f(a), g(b))$. Then h is $1-1$ because $h(a, b)=h\left(a^{\prime}, b ;\right)$ implies $f(a)=f\left(a^{\prime}\right)$ and $g(b)=g\left(b^{\prime}\right)$, and these equations imply $a=a^{\prime}$ and $b=b^{\prime}$ since f and g are 1-1. Therefore we have $|A \times B| \leq|K \times L|$.
30. Once again let f and g be as in the preceding two exercises, but now also let $r: K \rightarrow A$ be a mapping such that $r^{\circ} f=1_{A}$; to construct such a map let $a_{0} \in A$ (the latter is nonempty), and define $r(x)=a$ if $x=f(a)$ (there is only one a such that $f(a)=x$ and $r(x)=a_{0}$ if $x \notin f[A]$; observe that $r \circ f=1_{A}$.

We need to construct a $1-1$ mapping from $\mathbf{F}(A, B)$ to $\mathbf{F}(K, L)$. First define C_{1} : $\mathbf{F}(K, B) \rightarrow \mathbf{F}(K, L)$ sending $h: K \rightarrow B$ to the composite $g^{\circ} h$. This construction is $1-1$ for $g \circ h=g^{\circ} h^{\prime}$ implies $g^{\circ} h(x)=g^{\circ} h^{\prime}(x)$ for all $x \in K$, and since g is $1-1$ it follows that $h(x)=h\left(x^{\prime}\right)$ for all x, so that $h=h^{\prime}$. Next define $C_{2}: \mathbf{F}(A, B) \rightarrow \mathbf{F}(K, B)$ sending $\varphi: A \rightarrow B$ to the composite $\varphi^{\circ} r$. This construction is also $1-1$, for $\varphi^{\circ} r=\varphi^{\prime}{ }^{\circ} r$ impliest

$$
\varphi=\varphi^{\circ} 1_{A}=\varphi^{\circ} r^{\circ} f=\varphi^{\circ} \circ r^{\circ} f=\varphi^{\prime \circ} 1_{A}=\varphi^{\prime}
$$

Since C_{1} and C_{2} are 1-1, their composite $C_{1}{ }^{\circ} C_{2}: \mathbf{F}(A, B) \rightarrow \mathbf{F}(K, L)$ is also 1-1 and therefore $|\mathbf{F}(A, B)| \leq|\mathbf{F}(K, L)|$.-

1. By Exercise 3 from exercises06.pdf we know that if a countable family of subsets $A_{n} \subset \mathbb{R}$ satisfies $\left|A_{n}\right|=|\mathbb{R}|$ for all n, then the countable union $\bigcup_{n} A_{n}$ also has the same cardinality of \mathbb{R}. Split \mathcal{F} into the pairwise disjoint subfamilies \mathcal{F}_{n} of subsets with n elements, where n runs over all elements of \mathbb{N}. Then $\mathcal{F}_{0}=\{\emptyset\}$, and we claim that $\left|\mathcal{F}_{n}\right|=|\mathbb{R}|$ for all $n>0$. As usual, we shall use the Schröder-Bernstein Theorem.

If $n>0$, define a $1-1$ map $h_{n}: \mathbb{R} \rightarrow \mathcal{F}_{n}$ sending $a \in \mathbb{R}$ to the set $\{a, a+1, \ldots, a+n-1\}$, which shows that $|\mathbb{R}| \leq\left|\mathcal{F}_{n}\right|$. Next, define a map $k_{n}: \mathcal{F}_{n} \rightarrow \mathbb{R}^{n}$ as follows: Put the n elements of a set $B \in \mathcal{F}_{n}$ in order (with respect to the usual ordering of \mathbb{R}) say $x_{1}<\ldots<x_{n}$ and let k_{n} send this set to $\left(x_{1}, \ldots x_{n}\right) \in \mathbb{R}^{n}$. This map is also $1-1$, so we have $\left|\mathcal{F}_{n}\right| \leq\left|\mathbb{R}^{n}\right|=$ $|\mathbb{R}|$. We can now apply the Schröder-Bernstein Theorem to conclude that $\left|\mathcal{F}_{n}\right|=|\mathbb{R}|$ for each $n>0$ and therefore the set $\mathcal{F}_{+}=\bigcup_{n>0} \mathcal{F}_{n}$ also has the same cardinality as \mathbb{R} by the previously cited Exercise 3.

By consstruction we have $\mathcal{F}=\mathcal{F}_{+} \cup \mathcal{F}_{0}$, so we have one more thing to complete. Define a 1-1 mapping from \mathcal{F} to \mathbb{R}^{2} sending \mathcal{F}_{+}to the line $\mathbb{R} \times\{0\}$ and sending \mathcal{F}_{0} to $\{(0,1)\}$. This yields the chain of inequalities $|\mathbb{R}|=\left|\mathcal{F}_{+}\right| \leq|\mathcal{F}| \leq\left|\mathbb{R}^{2}\right|=|\mathbb{R}|$. By the Schröder-Bernstein Theorem this implies that $|\mathcal{F}|=|\mathbb{R}|$.
2. Since it is debatable whether 0^{0} can actually be defined, the problem should have been formulated for $n \geq 1$. In any case we know that $1!=1=1^{1}$ so the statement is true for $n=1$. To complete the argument, we need to show that $k!\leq k^{k}$ implies $(k+1)!<(k+1)^{k+1}$ for all $k \geq 1$.

The inductive step follows from the chain of inequalities

$$
(k+1)!=k!\cdot(k+1) \leq k^{k} \cdot(k+1)<(k+1)^{k} \cdot(k+1)=(k+1)^{k+1} .
$$

On its surface, the reasoning might not seem to fit perfectly because two separate statements are involved; namely, $k!\leq k^{k}$ for $k \geq 1$ and $k!<k^{k}$ for $k \geq 2$. More precisely, the reasoning for this exercise proceeds as follows: $1!=1=1^{1} \Longrightarrow 2!<2^{2} \Longrightarrow 2!\leq 2^{2} \Longrightarrow$ $3!<3^{3} \Longrightarrow 3!\leq 3^{3} \Longrightarrow 4!<4^{4} \ldots$ etc.■
3. Let S_{n} be the statement

$$
\sum_{k=1}^{n} \frac{1}{k^{2}+k}=\frac{n}{n+1} .
$$

Then one can verify directly that S_{1} is true, so to give a proof by mathematical induction we need to show that S_{n} implies S_{n+1} for all $n \geq 1$. If S_{n} is true then by the induction hypothesis we have

$$
\sum_{k=1}^{n+1} \frac{1}{k^{2}+k}=\left(\sum_{k=1}^{n} \frac{1}{k^{2}+k}\right)+\frac{1}{(n+1)^{2}+(n+1)}=\frac{n}{n+1}+\frac{1}{(n+1)^{2}+(n+1)}
$$

so the proof reduces to verifying that the right hand side is equal to

$$
\frac{n+1}{n+2}
$$

Here is the derivation of the identity that we need:

$$
\begin{gathered}
\frac{n}{n+1}+\frac{1}{(n+1)^{2}+(n+1)}=\frac{n(n+2)}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)}= \\
\frac{(n+1)^{2}}{(n+1)(n+2)}=\frac{n+1}{n+2}
\end{gathered}
$$

4. Let W_{n} (words of length n) be the set $A^{n} \times\{n\}$. Since A is finite the set W_{n} is also finite. Therefore $\operatorname{String}(A)$ is a union of the countable family of sets W_{n} where n runs through the elements of \mathbb{N}. Since a countable union of countable sets is countable, it follows that A is countable. To see that the set is infinite, consider the set of words formed using only one letter in A :

$$
(a, a, \ldots, a ; n) \quad \text { where } \quad a \in A \quad \text { and } \quad n \in \mathbb{N}_{+}
$$

Since this subset of $\operatorname{String}(A)$ is countably infinite, it follows that $\operatorname{String}(A)$ itself must be infinite.
5. Let S_{n} be the statement that n can be written in the form $5 a+7 b$ for suitable nonnegative integers a and b. In order to prove this using the Strong Principle of Finite Induction, we must first verify it for a few values of $n \geq 24$:

$$
\begin{array}{ll}
S_{24}: & 24=10+14=(5 \cdot 2)+(7 \cdot 2) \\
& S_{25}: \quad 25=(5 \cdot 5) \\
S_{26}: & 26=5+21=(5 \cdot 1)+(7 \cdot 3) \\
S_{27}: & 27=20+7=(5 \cdot 4)+(7 \cdot 1) \\
& S_{28}: \quad 28=(7 \cdot 4)
\end{array}
$$

The inductive step is then given as follows:

$$
\text { For } n \geq 29, S_{k} \text { true for } 24 \leq k \leq n-1 \Rightarrow \text { so is } S_{n} \text {. }
$$

We can prove this as follows: If $n \geq 29$, then $24 \leq n-5 \leq n-1$. Therefore S_{n-5} is true, so that $n-5=5 c+7 b$ for nonnegative integers b and c. Since we may rewrite this as $n=5(c+1)+7 b$ we see that $n=5 a+7 b$ where both $a=c+1$ and b are nonnegative integers. Therefore S_{n} is true, and this completes the proof by the Strong Principle of Finite Induction.

Finally, we need to show that S_{23} is false. Since 23 leaves a remainder of 3 when divided by 5 , any expression of the form $23=5 a+7 b$ must have $b>0$. The only possibilities are $b=1,2,3$. However, for each of these possibilities we know that $23-7 b=16,9,2$ is not evenly divisible by 5 , and therefore we cannot write $23=5 a+7 b$ where a and b are nonnegative integers

