
Math 144
Fall 2022

SOLUTIONS FOR WEEK 07 EXERCISES

Cunningham, Exercises 4.3

Recall our recursive definition: x0 = 1 and xk+1 = xk x

9. We shall prove mn · mk = mn+k by induction on k. If k = 1 this is trivial since
mk+0 = m = mk ·1 = mk ·m0. Suppose we know that mn ·mk = mn+k where k ≥ 0. Then
mn ·mk+1 = mn ·mk ·m = mn+k ·m (the last equation by the induction hypothesis), and
the final term is equal to mn+k+1 = mn+(k+1) by the recursive definition.

10. We shall prove (mn)k = mk · nk by induction on k. If k = 0 this reduces to
(1·1)0 = 10 = 1 = 1·1 = 10 ·10, and if k = 1 this is even more obvious since x1 = x for all x.
Suppose we know that (mn)k = mk ·nk for some k ≥ 0. Then (mn)k+1 = (mn)k ·mn by the
recursive definition. Applying the previous exercise, we see that this expression is equal to
mk ·nk ·m·n, and rearranging terms shows the latter is equal to mk ·m×nk ·n = mk+1 ·nk+1,
where the right hand side is obtained from the recursive definition.

11. We shall prove (mn)
k

= mnk by induction on k ≥ 1. If k = 1 then both the left and
right hand sides of the equation reduce to mn, so the statement is true for k = 1 (if k = 0
both sides are equal to 1, so this case is also no problem). Assume the equation holds for

k ≥ 1, and consider (mn)
k+1

.

By the definition of nonnegative integral exponents we have

(mn)
k+1

= (mn)
k ·mn

and by the induction hypothesis we know that (mn)
k

= mnk. Therefore the right hand
side of the displayed equation reduces to mnk ·mn, and by Exercise 9 above this reduces
further to mnk+n = mn(k+1), completing the proof of the inductive step.

Cunningham, Exercises 5.1

19. Let Vk =
⋃

i≤k Ai. Then V1 = A1 and hence Vk is finite if k = 1. To complete the
proof by induction, we want to show that if Vk is finite and 1 ≤ k < n then so is Vk+1. By
definition we have Vk+1 = Vk∪Ak+1 where Ak+1 is assumed to be finite and Vk is finite by
the induction hypothesis. These and the formula for the number of elements in a union of
two finite sets imply that Vk+1 is finite, completing the proof of the inductive step. When
we reach k + 1 = n, we have shown that the whole union is finite.
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Cunningham, Exercises 5.2

9. By assumption there is a 1–1 mapping f : A→ N. Pick some a0 ∈ A (we can do this
because A 6= ∅. Define a mapping g : N→ A as follows: If a = f(m) for some m, then m
is unique because f is 1–1, so we can define g(m) = a. If m is not in the image of f let
g(m) = a0. We then have g of(a) = a for all a ∈ A, so that every a ∈ A lies in the image
of g. Therefore g is onto.

15. By Exercise 14, which was assigned in exercises06.pdf, we know that the set of all
nonconstant polynomials with integral coefficients is countable. Write these polynomials
out in a sequence p1(t), p2(t), ... and for each k let Wk denote all the (real or complex) real
roots of pk(t). Each of the sets Wk is finite (and the number of elements is at most the
degree of Pk), so we have described the set of algebraic numbers as a countable union of
finite sets. As in the solution to the previoiusly cited exercise, such a union is countable, and
it follows that the set of all algebraic (real or complex) numbers must also be countable.

Cunningham, Exercises 5.4

28. By a previous exercise we know that there are 1–2 correspondences from A t B
to A ∪ B and from K t L to K ∪ L because A ∩ B = K ∩ L = ∅, so it suffices to prove
|A t B| ≤ |K t L|. Let f : A → K and g : B → L be 1–1 functions. Then one can check
directly that h : A t B → K t L defined by h(a, 1) = ( f(a), 1) and h(b, 2) = ( g(b), 2) is
1–1; by checking the second coordinate one sees that a point in A × {1} and a point in
B × {2} cannot go to the same point in K t L, and the restrictions of h to both A× {1}
and B × {2} are 1–1 by the choices of f and g. Therefore we have |A tB| ≤ |K t L|.
29. Let f and g be as in the previous exercise, and define h : A × B → K × L be
the product map h(a, b) = ( f(a), g(b) ). Then h is 1–1 because h(a, b) = h(a′, b; ) implies
f(a) = f(a′) and g(b) = g(b′), and these equations imply a = a′ and b = b′ since f and g
are 1–1. Therefore we have |A×B| ≤ |K × L|.
30. Once again let f and g be as in the preceding two exercises, but now also let
r : K → A be a mapping such that r of = 1A; to construct such a map let a0 ∈ A (the
latter is nonempty), and define r(x) = a if x = f(a) (there is only one a such that f(a) = x
and r(x) = a0 if x 6∈ f [A]; observe that r of = 1A.

We need to construct a 1–1 mapping from F(A,B) to F(K,L). First define C1 :
F(K,B) → F(K,L) sending h : K → B to the composite g oh. This construction is 1–1
for g oh = g oh′ implies g oh(x) = g oh′(x) for all x ∈ K, and since g is 1–1 it follows that
h(x) = h(x′) for all x, so that h = h′. Next define C2 : F(A,B) → F(K,B) sending
ϕ : A→ B to the composite ϕ or. This construction is also 1–1, for ϕ or = ϕ′ or impliest

ϕ = ϕ o1A = ϕ or of = ϕ′ or of = ϕ′ o1A = ϕ′ .

Since C1 and C2 are 1–1, their composite C1
o C2 : F(A,B) → F(K,L) is also 1–1 and

therefore |F(A,B)| ≤ |F(K,L)|.
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The remaining exercises in exercises07.pdf

1. By Exercise 3 from exercises06.pdf we know that if a countable family of subsets
An ⊂ R satisfies |An| = |R| for all n, then the countable union

⋃
n An also has the

same cardinality of R. Split F into the pairwise disjoint subfamilies Fn of subsets with
n elements, where n runs over all elements of N. Then F0 = {∅}, and we claim that
|Fn| = |R| for all n > 0. As usual, we shall use the Schröder-Bernstein Theorem.

If n > 0, define a 1–1 map hn : R→ Fn sending a ∈ R to the set {a, a+1, ..., a+n−1},
which shows that |R| ≤ |Fn|. Next, define a map kn : Fn → Rn as follows: Put the n
elements of a set B ∈ Fn in order (with respect to the usual ordering of R) say x1 < ... < xn

and let kn send this set to (x1, ...xn) ∈ Rn. This map is also 1–1, so we have |Fn| ≤ |Rn| =
|R|. We can now apply the Schröder-Bernstein Theorem to conclude that |Fn| = |R| for
each n > 0 and therefore the set F+ =

⋃
n>0 Fn also has the same cardinality as R by the

previously cited Exercise 3.

By consstruction we have F = F+∪F0, so we have one more thing to complete. Define
a 1–1 mapping from F to R2 sending F+ to the line R×{0} and sending F0 to {(0, 1)}. This
yields the chain of inequalities |R| = |F+| ≤ |F| ≤ |R2| = |R|. By the Schröder-Bernstein
Theorem this implies that |F| = |R|.

2. Since it is debatable whether 00 can actually be defined, the problem should have
been formulated for n ≥ 1. In any case we know that 1! = 1 = 11 so the statement
is true for n = 1. To complete the argument, we need to show that k! ≤ kk implies
(k + 1)! < (k + 1)k+1 for all k ≥ 1.

The inductive step follows from the chain of inequalities

(k + 1)! = k! · (k + 1) ≤ kk · (k + 1) < (k + 1)k · (k + 1) = (k + 1)k+1 .

On its surface, the reasoning might not seem to fit perfectly because two separate state-
ments are involved; namely, k! ≤ kk for k ≥ 1 and k! < kk for k ≥ 2. More precisely, the
reasoning for this exercise proceeds as follows: 1! = 1 = 11 =⇒ 2! < 22 =⇒ 2! ≤ 22 =⇒
3! < 33 =⇒ 3! ≤ 33 =⇒ 4! < 44... etc.

3. Let Sn be the statement

n∑
k=1

1

k2 + k
=

n

n + 1
.

Then one can verify directly that S1 is true, so to give a proof by mathematical induction
we need to show that Sn implies Sn+1 for all n ≥ 1. If Sn is true then by the induction
hypothesis we have

n+1∑
k=1

1

k2 + k
=

(
n∑

k=1

1

k2 + k

)
+

1

(n + 1)2 + (n + 1)
=

n

n + 1
+

1

(n + 1)2 + (n + 1)
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so the proof reduces to verifying that the right hand side is equal to

n + 1

n + 2
.

Here is the derivation of the identity that we need:

n

n + 1
+

1

(n + 1)2 + (n + 1)
=

n(n + 2)

(n + 1)(n + 2)
+

1

(n + 1)(n + 2)
=

(n + 1)2

(n + 1)(n + 2)
=

n + 1

n + 2
.

4. Let Wn (words of length n) be the set An × {n}. Since A is finite the set Wn is
also finite. Therefore String (A) is a union of the countable family of sets Wn where n
runs through the elements of N. Since a countable union of countable sets is countable, it
follows that A is countable. To see that the set is infinite, consider the set of words formed
using only one letter in A:

(a, a, ... , a;n) where a ∈ A and n ∈ N+

Since this subset of String (A) is countably infinite, it follows that String (A) itself must
be infinite.

5. Let Sn be the statement that n can be written in the form 5a + 7b for suitable
nonnegative integers a and b. In order to prove this using the Strong Principle of Finite
Induction, we must first verify it for a few values of n ≥ 24:

S24 : 24 = 10 + 14 = (5 · 2) + (7 · 2)

S25 : 25 = (5 · 5)

S26 : 26 = 5 + 21 = (5 · 1) + (7 · 3)

S27 : 27 = 20 + 7 = (5 · 4) + (7 · 1)

S28 : 28 = (7 · 4)

The inductive step is then given as follows:

For n ≥ 29, Sk true for 24 ≤ k ≤ n− 1 ⇒ so is Sn.

We can prove this as follows: If n ≥ 29, then 24 ≤ n− 5 ≤ n− 1. Therefore Sn−5 is true,
so that n − 5 = 5c + 7b for nonnegative integers b and c. Since we may rewrite this as
n = 5(c + 1) + 7b we see that n = 5a + 7b where both a = c + 1 and b are nonnegative
integers. Therefore Sn is true, and this completes the proof by the Strong Principle of
Finite Induction.

Finally, we need to show that S23 is false. Since 23 leaves a remainder of 3 when divided
by 5, any expression of the form 23 = 5a + 7b must have b > 0. The only possibilities
are b = 1, 2, 3. However, for each of these possibilities we know that 23 − 7b = 16, 9, 2 is
not evenly divisible by 5, and therefore we cannot write 23 = 5a + 7b where a and b are
nonnegative integers.
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