EXERCISES FOR WEEK 08

0. Work the following problems from Cunningham:

Exercises 7.1 (pp. 163-165): 2, 5, 6
Exercises 7.3 (pp. 122-124): 6

1. (a) If A and B are well-ordered sets, show that the disjoint union

$$
A \sqcup B=A \times\{1\} \cup B \times\{2\}
$$

is well ordered if we take the ordering such that (i) it agrees with the usual orderings on $A \times\{1\}$ and $B \times\{2\},(i i)$ the elements of $A \times\{1\}$ precede the elements of $B \times\{2\}$.
(b) Show that the well-ordered sets $A \sqcup B$ and $B \sqcup A$ are not necessarily equivalent well-orderings; specifically, if $A=\mathbb{N}$ and $B=\{1\}$ then there is no $1-1$ onto map from one to the other that is order-preserving. [Hint: If such a $1-1$ onto order-preserving map exists between two partially ordered sets, explain why one set has a maximal element if and only if the other does and how this applies to the given examples.]
2. A subset C of a partially ordered set A is said to be cofinal if for each $a \in A$ there is some $c \in C$ such that $c>a$. Prove that every linearly ordered set has a cofinal well-ordered subset.
3. Prove that a linearly ordered set is well-ordered if and only if the set of strict predecessors of each element is well-ordered.
4. Let S be a set, and let $\mathcal{F} \subset \mathcal{P}(S)$ be a collection of pairwise disjoint subsets. Prove that there is a subset C of S that has exactly one element in common with each subset A in \mathcal{F}. [Hint: This statement is logically equivalent to the Axiom of Choice.]
5. Find the mistake in the following argument, whose conclusion is obviously false:

Theorem. There is a finite set of nonnegative integers which is not a proper subset of another finite set of nonnegative integers.

Proof. Let \mathcal{B} be the set of finite subsets of \mathbb{N}, partially ordered by inclusion. Let $\mathcal{C} \subset \mathcal{B}$ be a linearly ordered subfamily, and let

$$
A=\bigcup_{C \in \mathbb{C}} C
$$

Since A contains each $C \in \mathcal{C}$, we know that A is an upper bound for the sets in \mathcal{C}. By Zorn's Lemma, it follows that \mathcal{B} has some maximal element M, and by definition M is a finite subset which is not properly contained in any other finite subset. THIS IS CLEARLY ABSURD, BUT WHERE IS THE MISTAKE?

