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Well – ordered sets and Zorn’s Lemma 
 

In the remainder of this course we shall focus our attention on two topics: 
 

1. The arithmetic of transfinite cardinal numbers and the tools needed for this. 
 

2. Set – theoretic assumptions that are equivalent to the Axiom of Choice. 
 

We begin with a simple question about the ordering of transfinite cardinal numbers:    
Given a set  S , is the set of cardinal numbers  Card( S)  linearly ordered ?  

Common sense suggests that it should be, but we have seen that even proving the 

antisymmetric property for cardinal numbers required a nontrivial result (the Schröder – 

Bernstein Theorem).  It turns out that proving the ordering is linear requires even more 

sophisticated input.   
 

Well – Ordering Axiom.   If  X  is a nonempty set, then there exists a partial ordering 

relation  OOOO on X such that X is well – ordered with respect to OOOO. 
 

When working with a given well – ordering on examples, we shall use the standard 

symbolism  x  <  y  and  x  ≤≤≤≤  y  in our discussions.  
 

One unsettling aspect of this assumption is that no one has ever constructed an 

explicit well – ordering of the real number system.   However, the Well – Ordering 

Axiom is logically equivalent to the Axiom of Choice.   A proof that the latter implies the 

existence of a well – ordering is presented in Sections 7.1 and 7.3 of Cunningham.  On 

the other hand, deriving the Axiom of Choice from the Well – Ordering Axiom is a fairly 

straightforward exercise. 
 

PROOF THAT WELL – ORDERING IMPLIES THE AXIOM OF CHOICE.   Given a 

nonempty set  A,  take some well – ordering of this set.  If  B is a nonempty subset of  

A,  then by well – ordering it has a least element, and we can simply define  c (B) ∈∈∈∈ B  

to be this least element . 

 
Countable well – ordered sets.   The most basic examples of well – orderings on a 

countable set are the usual well – ordering of  NNNN  and of its subsets  {1, 2, … , n},  but 

there are also many others.  Section 8.3 of Cunningham describes arithmetic 

constructions on well – ordered sets which yield many additional examples (see also 

Figure 8.1 in the next section of the text). 
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The following properties of well – ordered sets will play important roles in our uses of 

such objects.   
 

Theorem (Well – ordering of subsets).   A nonempty subset of a well – ordered set 

is well – ordered with respect to the induced ordering.  Furthermore, if X is a well – 

ordered set and  Y  ⊂⊂⊂⊂  X  is a subset such that  | Y |  <  | X |, then the induced ordering 

on Y is in 1 – 1 order – preserving correspondence with a subset of the form  

{ y ∈∈∈∈ X | y  <  x0 } for some  x0 ∈∈∈∈ X . 
 

PROOF.  The first sentence is easy to verify, for if W is a nonempty subset of Y then it is 

also a nonempty subset of X and therefore W has a least element.   
 

The proof of the second part of the theorem will be shown by a recursive procedure 

known as transfinite recursion.  As in the finite case, the basic idea is that we have a 

construction which has been completed for all  b < a  in a well – ordered set  X, and 

using this construction we describe a way to find a decent extension to the case  b = a.  
If  a  is not a maximal element of A, then the set of elements which are strictly greater 

than a  has a minimal element which we shall call  σσσσ (a        ) or  a + 1.  Then one uses a 

similar procedure to extend the construction to  a    , and so on.   
 

Suppose now that  Y is a nonempty subset of a well – ordered set  X and  | Y |  <  | X |.  

For each  a ∈∈∈∈ X  we want to construct a 1 – 1 onto, order – preserving, map  ha  from  

{ y ∈∈∈∈ X | y  <  a }  into  Y  with the following properties: 
 

1. If  z Y  and  z X  are the least elements of Y  and  X  respectively, then  ha  sends 

z X  to z Y. 

2. If  b  <  a, then  hb  is the restriction of  ha  to { y ∈∈∈∈ X | y  <  b }.  
 

3. If  hb  is defined for all  b < a  and the union of the images of these maps is a 

proper subset of  X, then  hb (a)  is the first element of Y not in the images of the 

maps hb . 
 

The first step shows how one begins the recursive process, the second one describes 

what one wants at each step, and the third indicates what the next step should be or if 

the recursive process must be terminated.  Each step is fairly straightforward, but 

eventually it becomes impossible to complete the third step, and this must happen by 

the time that that the cardinality of  { y ∈∈∈∈ X | y  <  b } becomes greater than  | Y |.  As in 

the finite case, the existence of the desired mapping is given as follows: 
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PRINCIPLE OF TRANSFINITE INDUCTION.   Let  W  be a nonempty well – ordered 

set, and  suppose that we are given a sequence of statements  Sαααα  where  αααα  runs 

through all the elements of  W.  Furthermore, assume also that the following hold :  
 

1. Statement  Sz  is true where  z  denotes the least element of  W. 
 

2. For all  αααα ∈∈∈∈ W, if Statement  Sββββ  is true for  ALL   ββββ  <  αααα  then Statement  Sαααα  is 

also true. 

Then all of the statements  Sαααα  are true. 
 

The justification is similar to the corresponding argument for the Strong Principle of 

Finite Induction. 
 

Returning to the proof of the theorem, if c is the first element of  X  such that  hc 

cannot be defined, then the union of the  ha  for  a  <  c  will yield the desired 1 – 1 

correspondence between Y and the set of all  a ∈∈∈∈ X such that  a  <  c. 

 

The preceding theorem implies that the set  Card( S)  is linearly ordered. 
 

Theorem (Linear ordering of cardinal numbers).  If  X  and  Y are subsets of some 

set  S, then either  | X |  ≤≤≤≤  | Y  |  or  | Y |  ≤≤≤≤  | X |.   
 

PROOF.  Let  W  be a set such that  X  ∪∪∪∪  Y  ⊂⊂⊂⊂  W  and | W |  >  | X  ∪∪∪∪  Y |;  for example, 

we can take  W  =  PPPP (X  ∪∪∪∪  Y  ).   Choose a well – ordering of  W.   By the previoius 

theorem we know that  X  and  Y  are in 1 – 1 correspondences with subsets of the 

form   { w ∈∈∈∈ W | w  <  a }  and  { w ∈∈∈∈ W | w  <  b }  respectively for some  a  and  b  in 

W.   If  a  =  b  then  we automatically have | X |  ≤≤≤≤  | Y  |.  Otherwise, if  a ≠≠≠≠  b, then 

every well – ordering is a linear ordering because the set  { a, b } has a least element, 

so either  a  or  b  is a minimal element; if  a  is minimal then  | X |  ≤≤≤≤  |Y  |, while if  b  is 

minimal then  | Y |  ≤≤≤≤  | X |.   

 
Zorn’s Lemma 

  
We shall now consider a statement which at first might look bizarre, but it is actually 

equivalent to the Axiom of Choice and the Well – Ordering Axiom.  The statement turns 

out to be extremely useful for giving (non – constructive) proofs that certain sorts of 

objects and functions exist. 
 

ZORN’S LEMMA.  Let  X  be a nonempty partially ordered set such that each linearly 

ordered subset Y has an upper bound in  X .   Then  X  has a maximal element.   
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Section  7.1 of Cunningham indicates how one can derive this statement from the 

Axiom of Choice.  Since we have seen that well – ordering implies the Axiom of 

Choice, it follows that the Well – Ordering Axiom also implies Zorn’s Lemma.  We shall 

explain how Zorn’s Lemma implies the Axiom of Choice and the Well – Ordering Axiom 

in an addendum to these notes, and we shall try to motivate Zorn’s Lemma by giving a 

quick and dirty proof here: 
 

DERIVING OF ZORN’S LEMMA FROM THE AXIOM OF CHOICE AND THE WELL – 

ORDERING AXIOM.    Suppose that  X  is a partially ordered set satisfying the 

hypothesis of Zorn’s Lemma, and consider what would happen if the conclusion were 

false.   In the argument that follows it will be convenient to extend the notation for 
closed, open and half open intervals from the real numbers to an arbitrary linearly 
ordered set. 
 

As suggested in the previous theorem, take a well – ordering of the power set PPPP (X ).  

We claim it is possible to define a strictly increasing map  f  from PPPP (X )     to X by 

transfinite recursion.  If we can do this, we will have a contradiction because there is no 

1 – 1 map from PPPP (X )     to X.  Let  k : X  →→→→     PPPP (X )  be a choice function.   
 

If z X is the least element of X, define  f (z X)  =  k (X ) to begin the process.  Suppose 

now that we have defined the function on [0, αααα), and let  J αααα  =   f [ [0, αααα)].   By 

hypothesis the latter is a linearly ordered subset of X and as such it has an upper 

bound.  Use the choice function  k  to select a particular upper bound  u (αααα) .  We are 

also assuming that X has no maximal element so the set of all elements strictly greater 

than u (αααα)  is nonempty; use  k  again to select some  f  (αααα)   >  u (αααα) .  Since  f  is strictly 

increasing for ββββ  <  αααα  and  f  (αααα) is greater than every element of  J αααα  by construction, it 

follows that  f  is 1 – 1 on the closed interval [0, αααα].   This completes the recursive step 

in the definition of the strictly increasing map  f : PPPP (X )  →→→→     X .   
 

As noted in the second paragraph of the argument, this yields a contradiction.  Where is 

the problem?  The construction of  f  relies heavily on the fact that X has no maximal 

element, so this must be false.  Thus  X must have a maximal element, and the 
existence of such an element is exactly what is needed to prove Zorn’s Lemma. 
 

In the next lecture we shall indicate how Zorn’s Lemma has major implications for the 
arithmetic of cardinal numbers, but first we shall illustrate the use of this result to extend 
a result about finite partial orderings to the transfinite case.   
 

Theorem (Extending partial orderings).  Let A be a set, and let  OOOO  ⊂⊂⊂⊂  A ×××× A  be a 

partial ordering.  Then there is a linear ordering  LLLL  ⊂⊂⊂⊂  A ×××× A  such that  OOOO  ⊂⊂⊂⊂  LLLL. 
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We frequently say that  LLLL  is a compatible linear ordering or LLLL is compatible with OOOO. 
 

As noted above, a result of this type is useful for many purposes.  For example, if  X  is 

a finite set and A is a family of subsets of X, then sometimes one wants prove a fact 

about the elements of A by mathematical induction, where A is linearly ordered such 

that for each pair of elements  B, C  in A such that  B  ⊂⊂⊂⊂  C we also have B  <  C.   
 

The nonconstructive nature of the stated theorem is illustrated by one simple fact:  A 

compatible linear ordering for the set  PPPP (NNNN ) of subsets of the natural numbers 

(ordered by inclusion) has never been explicitly constructed.  In contrast, given an 
arbitrary partial ordering  OOOO on a finite set, we have algorithmically constructed some  

explicit linear orderings  LLLL  which are compatible with OOOO. 
  

PROOF.   We shall first show that there is a maximal partial ordering containing the 
given one and then show that such a maximal partial ordering must be a linear ordering. 
 

Let  C  be the collection of all partial orderings of A that contain OOOO.   Then  C  is partially 

ordered by set – theoretic inclusion.  Let  D  be a subset of  C  that is linearly ordered 

by inclusion.   If we can show that  D  has an upper bound in C, then Zorn’s Lemma 

will imply that  C  has a maximal element.    
 

Denote the elements of  D  by LLLLs where  s  runs through some indexing set S, and let 

LLLL be the union of all the sets LLLLs.  Clearly LLLL contains OOOO since each LLLLs does; we would 

like to show that LLLL is also a partial ordering.  The relation LLLL is reflexive because LLLL 

contains OOOO and OOOO is reflexive.   
 

To verify the relation LLLL is antisymmetric, suppose that both (a, b) and (b, a)  belong to 

LLLL.  Then there are partial orderings LLLLs and LLLLt such that (a, b) belongs to LLLLs and (b, a) 

belongs to LLLLt.  Since  D  is linearly ordered by inclusion it follows that one of LLLLs and LLLLt  

contains the other.  If  LLLLu is the larger relation, then both (a, b) and (b, a) belong to LLLLu, 

and since the latter is a partial ordering this means that a  =  b.    
 

Finally, suppose that both (a, b) and (b, c) belong to LLLL.  Then there are partial 

orderings LLLLs and LLLLt  such that (a, b) belongs to LLLLs and (b, c) belongs to LLLLt .  Since  D 

is linearly ordered by inclusion it follows that one of LLLLs and LLLLt  contains the other.  If  

LLLLu is the larger relation, then both then both (a, b) and (b, c) belong to LLLLu, and since 

the latter is a partial ordering this means that (a, c) belongs to LLLLu, which is contained in 

LLLL.  Therefore LLLL is a partial ordering.  By construction,  it is an upper bound for the 

elements of  D, and thus Zorn’s lemma implies that  C  must have a maximal 

element. 
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The second part of the proof of the theorem is contained in the following result: 
 

Proposition (Maximal partial orderings are linear orderings).   Let A be a set, and 

let  OOOO  ⊂⊂⊂⊂  A ×××× A be a maximal partial ordering.  Then  OOOO  is a linear ordering. 
 

PROOF.   Suppose that OOOO is not a linear ordering.  Then we can find  x,  y  in  A  such 

that neither (x, y) nor ( y, x) lies in OOOO.   We shall obtain a contradiction by expanding OOOO 

to a partial ordering that contains (x, y).   In order to express the argument in familiar 

notation we shall write  u  ≤≤≤≤ OOOO  v  to signify that  (u, v)  lies in OOOO.   
 

Define a new binary relation LLLL such that (u, v) lies in LLLL if and only if either  u  ≤≤≤≤ OOOO  v or 

else both  u  ≤≤≤≤ OOOO  x and  y  ≤≤≤≤ OOOO  v.  The proof of the proposition then reduces to showing 
that  LLLL is a partial ordering. 
 

The relation LLLL is reflexive.   Since OOOO is a partial ordering, for each  a  ∈∈∈∈  A we know 

that (a, a)  ∈∈∈∈  OOOO  ⊂⊂⊂⊂  LLLL. 
 

The relation LLLL is transitive.   Suppose that (a, b)  ∈∈∈∈  LLLL  and  (b, c)  ∈∈∈∈  LLLL.  Then there 

are two options for each of the ordered pairs in the preceding sentence and thus a total 

of four separate cases to consider:   
 

1. We have a  ≤≤≤≤ OOOO  b together with b  ≤≤≤≤ OOOO  c.   

2. We have a  ≤≤≤≤ OOOO  b together with both b  ≤≤≤≤ OOOO  x and  y  ≤≤≤≤ OOOO  c.  

3. We have both  a  ≤≤≤≤ OOOO  x  and  y  ≤≤≤≤ OOOO  b  together with b  ≤≤≤≤ OOOO  c. 

4. We have both  a  ≤≤≤≤ OOOO  x  and  y  ≤≤≤≤ OOOO  b  together with both  b  ≤≤≤≤ OOOO  x  and       

y  ≤≤≤≤ OOOO  c.  

In the first case, since OOOO is a partial ordering we have a  ≤≤≤≤ OOOO  c, so that (a, c)  ∈∈∈∈  OOOO.  In 

the second case, since OOOO is a partial ordering we have a  ≤≤≤≤ OOOO  x, and therefore (a, c)  

satisfies the second criterion to be an element of LLLL.  In the third case, since OOOO is a 

partial ordering we have  y  ≤≤≤≤ OOOO  c, and therefore (a, c)  satisfies the second criterion to 

be an element of LLLL.  Finally, in the fourth case since OOOO is a partial ordering the middle 

two conditions imply that  y  ≤≤≤≤ OOOO  x, which contradicts our original hypothesis that neither 

of the relations x  ≤≤≤≤ OOOO  y  or  y  ≤≤≤≤ OOOO  x is valid.  Therefore the fourth case is impossible, 

and this completes the proof of transitivity. 
 

The relation LLLL is antisymmetric.   Suppose that (a, b)  ∈∈∈∈  LLLL  and  (b, a)  ∈∈∈∈  LLLL.  Then 

we have the same four cases as in the proof of transitivity, the only difference being that 

one must replace  c  by  a  in each case.  In the first case, since OOOO is a partial ordering 

we must have a  =  b.  In all the remaining cases, since OOOO is a partial ordering the given 

conditions combine to imply y  ≤≤≤≤ OOOO  x, which contradicts the assumption on LLLL.  Thus 

only the first case is possible, and this completes the proof that the relation LLLL is 
antisymmetric. 
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A more general perspective.   For many decades mathematicians have found Zorn’s 
Lemma to be particularly effective for proving theorems that depend upon the Axiom of 

Choice, largely because most of these results translate easily into the existence of a 

maximal object of some sort.  From this perspective, the proofs usually have two distinct 

parts: 
 

1. Showing that a maximal object of some type must exist using 
Zorn’s Lemma. 
 

2. Showing that such maximal objects must have certain desired 
properties. 

 

In the interests of illustrating proofs using Zorn’s Lemma, here is one more example: 
 
Theorem (Hausdorff Maximal Principle).  Every nonempty partially ordered set 

contains a maximal linearly ordered subset. 
 

PROOF.   Let X be a nonempty partially ordered set, let RRRR be the partial ordering and 

consider the family Y of all subsets  A  of  X  such that  
 

RRRR | A    =    RRRR   ∩∩∩∩   A ×××× A 
 

Is a linear ordering on A, with the partial ordering of  Y  given by set – theoretic 

inclusion.  The family Y is nonempty, for if  x  ∈∈∈∈     X  then one has the trivial linear 

ordering  
 

{ x } ×××× { x }    =    RRRR   ∩∩∩∩   ({x } ×××× { x } ) 
 

on the one point subset { x }  ⊂⊂⊂⊂     X.   
 

Suppose that we have a linearly ordered subfamily of subsets  X a as above.  If we take 

W  =  ∪∪∪∪ a X a  then we claim that  TTTT  =  RRRR | W is a linear ordering on W.  By 

construction it is a partial ordering, so the only thing to prove is the dichotomy property.  

Suppose now that  x,  y  ∈∈∈∈     W.  Then one can find  a  and  b  such that  x  ∈∈∈∈     X a and  

y  ∈∈∈∈     X b .  The linear ordering property implies that one of a  or  b  is greater than or 

equal to the other; if  c  denotes this element, then we have x,  y  ∈∈∈∈     X c .  Since the 

latter set is linearly ordered with respect to 
 

SSSS c   =   RRRR | X c 
 

it follows that either (x, y)  ∈∈∈∈     SSSS c or ( y, x)  ∈∈∈∈     SSSS c , and since the latter is contained in  TTTT 

it follows that one of the two pairs must lie in TTTT.  Therefore TTTT is a linear ordering, and 

therefore  W  is an upper bound in Y for all of the linearly ordered subsets X a . 
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We can now use Zorn’s Lemma to conclude that Y  has a maximal element, which is 

given by a subset M with the linear ordering LLLL  =  RRRR | M.  It follows immediately that M 

is a maximal linearly ordered subset. 
 

As in the preceding theorem, if  X  is finite there are much easier ways to find examples 
of maxial linearly ordered subsets.  One method is to take a linearly ordered subset with 
the greatest number of elements. 
 
For the sake of completeness we note that the Hausdorff Maximal Principle is also 

logically equivalent to Zorn’s Lemma (or the Axiom of Choice or the Well – Ordering 

Principle).   However, the property of extending partial orderings to linear orderings 
turns out to be logically weaker than the Axiom of Choice and its equivalent statements 
(this result is due to A. R. D. Mathias). 

 
  
 
 
 

 
. 
 

 
 
  


