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SOLUTIONS FOR WEEK 08 EXERCISES

Cunningham, Exercises 7.1

2. For each x ∈ A let xR be the set of all y ∈ B such that (x, y) ∈ R. The assumtion on
R implies that each set xR is nonempty. If c : P(B) − ∅ → B is a choice function, define
f(x) = c (xR). Then f is a function by construction, and its graph is contained in R.

5. (a) The set
⋃

C clearly contains every c ∈ C, and since
⋃

C ∈ F we know that
the latter is partially ordered. We need to show that it is linearly ordered. Let x1, x2 be
distinct elements of

⋃
C, where x1 ∈ c1 ∈ C and x2 ∈ c2 ∈ C. Since C is linearly ordered,

one of c1, c2 contains the other. Without loss of generality we might as well assume that
c2 is the larger subset. Since x1 and x2 both belong to the latter, it follows that either
x1 ≤ x2 or x1 ≥ x2 and hence

⋃
C is linearly ordered. By construction, it is then an

upper bound for C in F.

(b) The point of (a) was to prove that the linearly ordered subset C ⊂ F has an upper
bound in F. Therefore Zorn’s Lemma implies that F has a maximal element M , and as
such it is not a proper subset of any A ∈ F.

6. (a) We are looking at the partially ordered set M of all C ⊂ A such that f |C is
1–1. Let L be a linearly ordered subset of M . We claim that

⋃
L ⊂ M . If not, then the

restriction of f to
⋃
L is not 1–1. Suppose that x1, x2 ∈

⋃
L are are distinct elements

such that f(x1) = f(x2). As in 5(a) let x1 ∈m1 ∈ L and x2 ∈m2 ∈ L. Since L is linearly
ordered, one of m1, m2 contains the other. Without loss of generality we might as well
assume that m2 is the larger subset. Since x1 and x2 both belong to the latter, we know
that the restriction of f to m2 is 1–1 and hence x1 = x2. This contradicts our earlier
assumption that x1 6= x2. The source of the contradiction is our assumption that f is not
1–1 on

⋃
L, so this must be false and we are forced to conclude that the latter is linearly

ordered. By construction
⋃

L is an upper bound for all the sets in L and L ∈ M . By
Zorn’s Lemma this means that M must have a maximal element.

(b) In the setting of (a), assume further that f is onto. Let C ∈ M be maximal, but
let us assume that f [C] is a proper subset of B. If b0 ∈ B does not lie in f [C], let a0 ∈ A be
such that b0 = f(a0); such an element exists because f is onto. Since b0 6∈ f [C] if follows
that a0 6∈ C. But this means that the restriction of f to the larger subset C∪{a0} 6= C will
be 1–1 since nothing in C maps to b0 and f |C is 1–1. This contradicts the maximality of
C. The source of the contradiction is our assumption that f |C is not onto, so we conclude
that the latter must define a 1–1 onto mapping from C to B.
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Cunningham, Exercises 7.3

6. Let X ⊂ A×B be nonempty, and let X1 be the set of first coordinates for elements
of X. Since X is nonempty it follows that X1 is too. Let α0 be the least element of X1.
Next, let X2(α0) be the set of all β ∈ B such that (α0, β) ∈ X. This set is also nonempty
since there is some element of X with first coordinate α0. Therefore X2(α0) ⊂ B has a
least element β0. By the definition of the lexicographic order we know that (α0, β0) must
be the least element of X.

The remaining exercises in exercises08.pdf

1. (a) Suppose that X is a nonempty subset of A t B. If either X ⊂ A × {1} or
X ⊂ B × {2} then X is in 1–1 order=preserving correspondence with a nonempty subset
Y of A or B respectively. The hypotheses imply that Y must have a least element ξ, and
the corresponding element (ξ, k) of X ⊂ A × {1} or X ⊂ B × {2} will then be the least
element of X. If X contains elements of both X ⊂ A×{1} and X ⊂ B ×{2} then the set
X ∩ (A× {1}) is nonempty and hence the set of all α ∈ A such that (α, 1) ∈ X ∩ (A× {1})
will have a minimal element ξ; the corresponding element (ξ, 1) of X ∩ (A× {1}) will then
be a least element of X.

(b) We shall use the following fact: If f : X → Y is a 1–1 onto and strictly order-
preserving mapping of partially ordered sets and m is a maximal element of X, then f(m)
is a maximal element of Y . Verifying this is an elementary exercise.

The inequivalence of the well-orderings now follows because A t B has a maximal
element (1, 2) but B t a has no maximal element.

2. Choose a well-ordering of P(A) and try to construct a strictly increasing map from
P(A) with this well-ordering to A (forget the partial ordering of P(A) by inclusion).
Let’s call this well-ordered set W to avoid confusion; the main thing we need to know is
that |A| < |W |.

Let A+ = A ∪ {A} and extend the partial ordering on A to A+ by making A ∈ A+

the maximal element; here we are using the fact that no set is a member of itself. We shall
define a nondecreasing map f : W → A+ by transfinite recursion such that f is strictly
increasing on f−1[A].

Denote the minimal element of W by 0, and define f(0) by picking a point in A using
a choice function. Suppose now that we have defined f(β) for all β < α; we need to define
f(α). There are two cases. If there is some z ∈ A such that z > f(β) for all β < α, define
f(α) by choosing such a value of z (again, this requires a choice function). If no such value
of z exists, let f(α) = A.

Let B = f
[
f−1[A]

]
; since P is well-ordered and f is strictly increasing on on f−1[A],

it follows that B is a well-ordered subset of A. Thus it will suffice to show that B is
cofinal in A. Suppose that x ∈ A; we need to show that there is some b ∈ B such that
b > x. Assume this does not hold for some particular choice of x. If this happens then the
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recursive definition yields a strictly increasing map from W into A, and in fact the image
is contained in the set of all elements less than x. Since f is strictly increasing it follows
that |W | ≤ |A|. However, by construction we have |W | > |A|, which yields a contradiction.
This means that for each x ∈ A there must be some b such that b > x, so that B is a
cofinal well-ordered subset.

3. One direction is straightforward: If a set X is well-ordered then every nonempty
subset is well ordered; strictly speaking, this is only true for nonminimal elements (there
are no strict predecessors for the least element), but this omission has no further effect on
the solution.

Assume now that for every nonminimal element x ∈ X the set P (x) of all y ∈ X such
that y < x is well-ordered. Let Y be a nonempty subset of X, and let xx ∈ Y . If x is
the least element of Y the conclusion of the result is true. Otherwise the set Y ∩ P (x) is
nonempty, and as such it has a minimal element y0. We claim that y0 is also a minimal
element of Y . To see this, let z ∈ Y . Then either z ≥ x or z < x. If z < x then
z ∈ Y ∩ P (x), and since y0 is the least element of the latter subset it follows that y0 ≤ z.
If x ≤ z then y0 < x ≤ z because y0 ∈ P (x). Since X is linearly ordered it follows that y0
is in fact the least element of Y .

4. Let c be a choice function on P(S) and consider the set of all objects of the form
c(F ) where f runs through the members of F. Since the family is pairwise disjoint, it
follows that for each F we have F ∩ C = {c(F )}.

5. The set A does not belong to B if A is infinite, and this possibility can be realized.
Specifically, let B be the family of sets {0, 1, ... , n}. Then A = N and therefore is not
finite. In fact, if A is infinite then there is no upper bound for the chain B = C.
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