
1 
 

L17 
 

Transfinite cardinal arithmetic 
 

We are now ready to state and derive the basic facts about the arithmetic of cardinal 
numbers.  In several ways this resembles the arithmetic of nonnegative integers, but in 
others there are significant differences.  Some of these simply reflect results obtained 
thus far, but there are also many other differences.   We shall begin with the basic 
definitions. 
 

Definition. (Addition of cardinal numbers).  If A and B are sets with cardinal 

numbers | A | and | B | respectively, then the sum   | A | + | B | is equal to | A ⊔⊔⊔⊔ B |. 
 

Definition. (Multiplication of cardinal numbers).  If A and B are sets with cardinal 

numbers | A | and | B | respectively,  then the product   | A | × | B |  or  | A |⋅⋅⋅⋅ | B |  (or 

sometimes even  | A | | B |) is equal to |  A ×××× B |. 
 

Definition. (Exponentiation of cardinal numbers).  If A and B are sets with cardinal 

numbers | A | and | B | respectively,  then the  power operation  (or  exponential 

operation )  | A | 

|
 

B
 

|
   is  |F( B, A )|, where F( B, A ) is the set of functions from B to A .  

 

In order to justify these definitions we need to verify two things; namely, that ( i ) these 

definitions agree with the counting results in previous lectures when A and B are finite 

sets, and also ( ii ) that the construction is well – defined ; we have defined the 

operations by choosing specific sets A and B with given cardinal numbers, and we 

need to make sure that if choose another pair of sets, say C and D, then we obtain the 

same cardinal numbers.  The first point is easy to check; if A and B are finite sets, then 

the formulas in Lecture 10 show that the numbers of elements in the finite sets  A ⊔⊔⊔⊔ B,  

A ×××× B,  and  F( B, A )  are respectively equal to | A | + | B | ,  | A |⋅⋅⋅⋅ | B |  and  F( B, A ).  
The following elementary result disposes of the second issue. 
 

Proposition (Cardinal arithmetic operations are well – defined).  Suppose that we 

are given sets A, B, C, D and we also have 1 – 1  onto correspondences  f : A  →→→→  C 

and  g : B  →→→→  D.   Then there are 1 – 1 onto correspondences from  A  ⊔⊔⊔⊔     B ,  A ×××× B,  

and  F( B, A ) to  C  ⊔⊔⊔⊔     D ,  C ×××× D ,  and  F( D, C )  respectively. 
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PROOF.  Partial generalizations involving inequalities are proved in the exercises for 

week 08:  If we have mappings  f  and  g   which are  1 – 1 but not necessarily onto, 

then there are 1 – 1 (but not necessarily onto) mappings from  A  ⊔⊔⊔⊔     B ,  A ×××× B,  and   

F( B, A ) to  C  ⊔⊔⊔⊔     D ,  C ×××× D ,  and  F( D, C )  respectively.  We claim that these maps 

have inverses if both  f  and  g   have inverses. 
 

The main idea for proving the inequalities was to define mappings 

H : A  ⊔⊔⊔⊔     B   →→→→    C  ⊔⊔⊔⊔     D ,    J : A ×××× B  →→→→  C ×××× D ,    K : F( B, A )  →→→→  F( D, C ) 
 

by the following formulas: 
 

H(a, 1)    =    (  f (a) , 1) ,     H(b, 2)  =  (  g(b) , 2) 
 

J(a, b)    =   (  f (a) , g(b) ) 
 

[ K(ϕϕϕϕ)] (c)  =  f ϕϕϕϕ g
 – 1 

(c) 
 

We can also define mappings in the opposite direction(s) 
 

L : C  ⊔⊔⊔⊔     D   →→→→   A  ⊔⊔⊔⊔     B,    M : C ×××× D    →→→→    A ×××× B ,    N : F( D, C )  →→→→  F( B, A ) 
 

by substituting  f
 
 
–

 

1
,  g

 – 1 
 and  g  for the variables  f ,  g  and  g

 – 1
 into the 

corresponding definitions of  H,  J and  K  respectively.  Routine calculations (left to the 

reader) show that the maps  L,  M and  N  are inverses to the corresponding mappings  

H,  J and K.  
 

Corollary.  If  X  is a set then the cardinality of  PPPP (X),   the set of all subsets of  X, is 

equal to  2
|X|

. 
 

This follows because there is a 1 – 1 correspondence between  PPPP (X) and the set of all 

functions from  X  to {0, 1}. 

 
We are now in a position to verify that the arithmetic of cardinal numbers has many of 

the same formal properties as the arithmetic of nonegative integers.   We shall start with 

the rules for addition and multiplication. 
 

Theorem (Arithmetic identities for cardinal numbers).  If  αααα,  ββββ,  and γγγγ  are cardinal 

numbers for some subsets of a sufficiently large set  S, then the sum and product 

operations obey the following algebraic identities: 
 

(Associative law of addition)        (αααα  +  ββββ)  +  γγγγ        =    αααα     +  (ββββ    +  γγγγ)     
 

(Commutative law of addition)        αααα  +  ββββ        =    ββββ  +  αααα     
 

(Associative law of multiplication)      (αααα⋅⋅⋅⋅ ββββ) ⋅⋅⋅⋅ γγγγ        =    αααα ⋅⋅⋅⋅ (ββββ⋅⋅⋅⋅ γγγγ)       
 

(Commutative law of multiplication)        αααα ⋅⋅⋅⋅ ββββ        =    ββββ ⋅⋅⋅⋅ αααα 
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(Distributive law)        αααα ⋅⋅⋅⋅ (ββββ    +  γγγγ)            =    (αααα ⋅⋅⋅⋅ ββββ)  +  (αααα ⋅⋅⋅⋅ γγγγ) 
 

(Equals added to unequals)    αααα  ≤≤≤≤     ββββ                αααα  +  γγγγ  ≤≤≤≤       ββββ  +  γγγγ 
 

(Equals multiplied by unequals)        αααα  ≤≤≤≤     ββββ                αααα ⋅⋅⋅⋅ γγγγ  ≤≤≤≤       ββββ ⋅⋅⋅⋅ γγγγ 
 

(Rules for 0 = cardinality of empty set)     αααα  +  0000     =  αααα    ,                    αααα ⋅⋅⋅⋅ 0000     =  0000 
 

(Rule for 1111)     αααα ⋅⋅⋅⋅ 1111      =  αααα 
 

These are all straightforward to verify.   For example, the commutative laws are just a 

restatement that there are 1 – 1  onto maps from  A  ⊔⊔⊔⊔     B  to  B  ⊔⊔⊔⊔     A  and  also from  

A ×××× B  to  B ×××× A.    Similarly, the distributive law is an abstract way of saying that there 

is a 1 – 1  onto map from  A ×××× (B ⊔⊔⊔⊔    C )  to  (A ×××× B ) ⊔⊔⊔⊔    (A ×××× C )     .  .  .  .  The rules for  0000  

and  1  reflect the facts that  A  ∪∪∪∪  Ø   =   A,   A ××××  Ø   =  Ø ,  and the coordinate 

projection from  A ×××× {1}  to  A  sending  (a, 1)  to  a  is 1 – 1 onto.  
 

NOTE.   In the statements about inequalities, one cannot draw stronger conclusions if 

there is a strict inequality  αααα  <     ββββ.  This will follow from the identities in the next 

theorem, which restates the addition and multiplication rules involving the first transfinite 

cardinal number  ℵℵℵℵ0: 
 

Theorem (Arithmetic identities involving  ℵℵℵℵ0).     We have the following identities 

involving  ℵℵℵℵ0: 

(Idempotent laws)        ℵℵℵℵ0 + ℵℵℵℵ0   =   ℵℵℵℵ0 ,   ,   ,   ,   ℵℵℵℵ0 ⋅⋅⋅⋅ ℵℵℵℵ0   =   ℵℵℵℵ0.      

(Extended idempotent laws)        0   <   n  <   ℵℵℵℵ0           n ⋅⋅⋅⋅ ℵℵℵℵ0  =  ℵℵℵℵ0 ,   

(ℵℵℵℵ0 ) 
n    =   ℵℵℵℵ0 

(Absorption law)        k  ≤≤≤≤     ℵℵℵℵ0  ≤≤≤≤     αααα              αααα  +  k         =   αααα     
 

The Idempotent law was verified earlier, and the extended idempotent laws follow by 

finite induction and the definition of nonnegative integral exponents (see the exercises).  

Here is a proof of the absorption law:  Choose  A such that  | A |  =  αααα....  Since  A  is 

infinite, it contains a countably infinite subset   D; let  C  =  A – D.  Then we have   

αααα  =  | C |  +  ℵℵℵℵ0   =   | C |  +  ℵℵℵℵ0  +  ℵℵℵℵ0  =  αααα  +  ℵℵℵℵ0,  proving the identity when  

k  =  ℵℵℵℵ0.   We can retrieve the case  k  <  ℵℵℵℵ0  from the case k  =  ℵℵℵℵ0, the chain of 

inequalities   
 

αααα   ≤≤≤≤      αααα  +  k   ≤≤≤≤      αααα  +  ℵℵℵℵ0   =   αααα 
 

and the Schröder – Bernstein Theorem.   
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Examples.   The preceding theorem implies that  ℵℵℵℵ0 + 1   =   ℵℵℵℵ0 + 2, showing that  

αααα  <     ββββ     does not necessarily imply  αααα  +  γγγγ  <       ββββ  +  γγγγ.   Similarly,     1 ⋅⋅⋅⋅ ℵℵℵℵ0   =   ℵℵℵℵ0  

and        ℵℵℵℵ0 ⋅⋅⋅⋅ ℵℵℵℵ0   =   ℵℵℵℵ0  show that  αααα  <     ββββ     does not necessarily imply  αααα ⋅⋅⋅⋅ γγγγ  <      ββββ ⋅⋅⋅⋅ γγγγ. 
 

Finally, exponentiation for cardinal numbers satisfies the standard identities which hold 

for nonnegative integers:   
 

Theorem (Laws of exponents).  If  αααα,,,,  ββββ  and  γγγγ  are (finite or transfinite) cardinal 

numbers, then the following equations hold : 
    

γγγγ    αααα
    
++++

 
ββββ            =            γγγγ    αααα ⋅⋅⋅⋅ γγγγ    ββββ    

    

(γγγγ    
αααα

    )    

ββββ
            =            γγγγ    

αααα
    
ββββ
    

    

((((ββββ    γγγγ))))    αααα             =            ββββ    αααα
    ⋅⋅⋅⋅ γγγγ    αααα    

 

These will follow from some basic results on sets of functions from one set to another: 
 

Theorem (Exponential laws for sets of functions).  If  A,  B  and  C are sets,  then 

one has the following 1 – 1  correspondences : 

1. F( A ⊔⊔⊔⊔    B, C )  →→→→  F( A, C ) ×××× F( B , C ) 
 

2.  F( A, F( B , C ) )  →→→→  F(A ×××× B, C ) 
 

3.  F( A, B ×××× C )  →→→→  F( A, B ) ×××× F( A , C ) 
 

Hints for proving these exponential laws are given in the exercises for this lecture. 
 

Corollary.   We have  2
ℵℵℵℵ0 ×××× 2ℵℵℵℵ0    =    2ℵℵℵℵ0,  2ℵℵℵℵ0     =        2ℵℵℵℵ0 + 2ℵℵℵℵ0  and   2ℵℵℵℵ0    =    ℵℵℵℵ0  ××××  2

ℵℵℵℵ0 . 
 

PROOF.   By the first law of exponents we have  2
ℵℵℵℵ0 ×××× 2ℵℵℵℵ0    =    2ℵℵℵℵ0+ℵℵℵℵ0        =        2ℵℵℵℵ0, where 

the final equation is true because ℵℵℵℵ0 + ℵℵℵℵ0   =   ℵℵℵℵ0....        The remaining equalities are 

consequences of the following chain of inequalities: 
 

2
ℵℵℵℵ0   ≤≤≤≤   2

ℵℵℵℵ0 + 2ℵℵℵℵ0   ≤≤≤≤   ℵℵℵℵ0  ××××  2
ℵℵℵℵ0   ≤≤≤≤   2

ℵℵℵℵ0 ×××× 2ℵℵℵℵ0        =     2ℵℵℵℵ0. 
 

This corollary is essentially a refinement of the previously established result that the 

cardinalities of  RRRR  and  RRRR 

n
  =  RRRR    ×××× … x RRRR  (with n  >  1  factors) are equal (see Lecture 

13).   However, it also reflects a key property of addition and multiplication for arbitrary 

transfinite cardinals; namely, the addition and multiplication tables are very simple and 

are given by idempotent identities  αααα + αααα     =  αααα ⋅⋅⋅⋅ αααα  =  αααα        and some straightforward 
consequences of these facts.  We shall prove the idempotent identities in the next 

lecture.   
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Transcendental numbers 

  
A real or complex number  a  is said to be algebraic if it is a root of some nontrivial 

polynomial with integer coefficients, and it turns out that this is equivalent to saying that 

a  is a root of some nontrivial polynomial with rational coefficients; if  a  is not algebraic, 

then it is said to be transcendental.   
 

It is not clear when mathematicians first considered the concept of a transcendental 
number, but various historical facts strongly suggest this took place near the middle of 
the 17th century.  Many mathematicians speculated about the existence of such 

numbers and whether   ππππ  or  e  might be transcendental, but the existence of 

transcendental numbers was first shown rigorously by J. Liouville in the 1840s.  His 

work gave specific examples including the so – called Liouville constant : 
 

 

During the next few decades, proofs that e and ππππ were transcendental finally appeared; 
these results were due to C. Hermite and F. Lindemann respectively.  Many other easily 
constructed numbers have been shown to be transcendental numbers since the original 

results of Liouville, but there are still many open questions that are very easy to state 

but seem unlikely to be answered in the foreseeable future.   For example, it is not 

known whether  ππππ    e  or  ππππ + e  is transcendental (however, we know that at least one of 

these numbers is transcendental).   
 
Theorem. (Strong existence theorem for real transcendental numbers – Cantor).  

The set of transcendental real numbers is nonempty, and its cardinality is equal to 2
ℵℵℵℵ0. 

 

PROOF.   By definition the set of real numbers RRRR splits into a union of the disjoint 

subsets  A  of algebraic real numbers and  T  of transcendental real numbers.  By one 

of the previous exercises we know that  | A |  =  ℵℵℵℵ0.   Therefore we have  a string of 

equations  2
ℵℵℵℵ0  =  | RRRR    |  =  | A | + | T |  =  ℵℵℵℵ0  +  | T |  =  | T | .    

 
 

 

 
 

 
 

  


