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L17A 

 

Transfinite cardinal arithmetic  I I 
 

In this interlude between lectures 17 and 18  we shall prove the basic facts about 

adding and multiplying transfinite cardinal numbers. 
 

Theorem (Idempotent laws for transfinite cardinals).    If A is an infinite set, then we 

have | A |  +  | A |  =  |A|   and   | A | ⋅⋅⋅⋅ | A |   =   | A |.  
 
Corollary (Absorption law for transfinite cardinals).  If A and B are nonempty sets 

and at least one is infinite, then  
 

| A |  +  | B |  =  | A | ⋅⋅⋅⋅ | B |   =   | C | 
 

where  | C |  is the larger of  | A |  and  | B |. 
 
The final portion of this statement relies on the fact that cardinal numbers are linearly 

ordered, which was established in Lecture 16.  Of course, the corollary is almost always 

false if both  A  and  B  are finite. 
  
PROOF THAT THE THEOREM IMPLIES THE COROLLARY.   Without loss of 

generality, we might as well assume that  | A |  is the larger of the two cardinal numbers.  

If we can prove the result in this case, the proof when  | B |  is the larger will follow by 

interchanging the roles of  A  and  B  systematically throughout the argument.  Such 
“without loss of generality” reductions are used frequently in mathematical proofs to 

simplify the discussion. 

Since we are assuming  | A |  ≥≥≥≥  | B |,  we may combine the conclusion of the theorem 

with the basic formal properties of cardinal addition and multiplication to conclude that  
 

| A |    ≤≤≤≤                | A | ++++ | B |    ≤≤≤≤                | A | ++++ | A |    =    | A | 
 

so that | A | ++++ | B |   =   | A |,  and similarly  
 

| A |   ≤≤≤≤                | A | ⋅⋅⋅⋅ | B |    ≤≤≤≤                | A | ⋅⋅⋅⋅ | A |    =    | A | 
 

so that | A | ⋅⋅⋅⋅ | B |   =   | A |. 

 

PROOF OF THE THEOREM.     We begin with the additive identity, both because it is 

simpler and because it is needed to prove the multiplicative identity.  Both arguments 

are based upon Zorn’s Lemma. 
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Proof that  | A |  +  | A |  =  |A| .    Let UUUU A be the set of all pairs (B, f ) where B  ⊂⊂⊂⊂     A 

is a nonempty subset and  f : B ⊔⊔⊔⊔    B   →→→→  B is a 1 – 1 correspondence.  If we set (B, f  )  

≤≤≤≤     (C, g ) if and only if  g(b, n)  =  f (b, n)  for  n  ====  1 or 2,  then routine calculations 

show that  ≤≤≤≤     defines a partial ordering on UUUU A . 
 

The set  UUUU A  is nonempty because  A  contains a countably infinite subset  C and we 

know that there is a bijection from  C ⊔⊔⊔⊔    C  to  C. 
 

Suppose now that we have a linearly ordered subset of  UUUU A  whose elements have the 

form  (Bt,  ft ) , where t  lies in some indexing set.  For each  t  let  Gt  denote the graph 

of ft , let  B  be the union of the sets Bt, and let  G  be the union of the graphs Gt .  We 

claim that  G  is the graph of a 1 – 1 correspondence from  B ⊔⊔⊔⊔    B  to  B.  If so, then we 

have  (B, f  )  ≥≥≥≥     (Bt,  ft ) for all t and hence the hypotheses of Zorn’s Lemma apply.   
 

Suppose that  z  ∈∈∈∈  B ⊔⊔⊔⊔    B, and choose  t  such that  z    ∈∈∈∈ Bt ⊔⊔⊔⊔    Bt.  Then there exists a 

unique w  ∈∈∈∈  Bt  such that  (z, w)  ∈∈∈∈     Gt ;  we claim there are no other points in G with 

first coordinate equal to z .   If (z, x)  ∈∈∈∈     G, then there is some indexing variable  s  such 

that (z, x)  ∈∈∈∈     G s .  Choose  r  so that G r is the larger of  G s  and  Gt ;  then (z, w) and 

(z, x)  ∈∈∈∈     G r  imply  w  =  x  because  G r  is the graph of a function.  Thus  G  is also 

the graph of a function.   What is the domain of  G?   If  (z, w)  ∈∈∈∈     G,  then z  ∈∈∈∈      

Bt ⊔⊔⊔⊔    Bt   ⊂⊂⊂⊂         B ⊔⊔⊔⊔    B  for some  t, and conversely if  z  ∈∈∈∈  B ⊔⊔⊔⊔    B  then for some t  we 

have  z  ∈∈∈∈  Bt ⊔⊔⊔⊔    Bt,  so there is an ordered pair of the form  (z, w)  ∈∈∈∈     Gt   ⊂⊂⊂⊂         G. 
 

Next, we need to show that the function  f  with graph  G  is a bijection.  If  f (x)  =  f (y) 

then as before one can find a single set  Bt  such that  x, y  ∈∈∈∈         Bt ⊔⊔⊔⊔    Bt   ⊂⊂⊂⊂         B ⊔⊔⊔⊔    B  

for some  t, and conversely if  z  ∈∈∈∈  B ⊔⊔⊔⊔    B then for some  t  we have  z  ∈∈∈∈  Bt ⊔⊔⊔⊔    Bt.  

Then we have  
 

ft (x)  =  f (x)  =  f (y)  =  ft (y) 
 

and since  ft  is 1 – 1 it follows that  x  =  y.   Also, given  z  ∈∈∈∈  B, choose  t  such that 

z  ∈∈∈∈  Bt,  so that  z  =   ft (w)  =  f (w)  for some  w  and hence  f  is onto.  This 

completes the proof that linearly ordered subsets of  UUUU A  have maximal elements.   
 

By Zorn’s Lemma there is a maximal element  (M, h)  of   UUUU A,  and by construction we 

have  | M | ++++ | M |    =    | M | .   If  | M |  =  |A|  then the proof is complete, so assume 

the cardinalities are unequal.  Since M  is a subset of  A we must have  | M |  <  |A|, 
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and in fact by the rules of cardinal arithmetic it follows that  | A – M |  must be infinite (if 

it were finite then we would have | M |  =  |A|).  Let C  ⊂⊂⊂⊂         M be a countably infinite set, 

let  h0 : C  ⊔⊔⊔⊔     C    →→→→  C  be a 1 – 1 correspondence, and consider the map  

k: (M ∪∪∪∪ C)   ⊔⊔⊔⊔         (M ∪∪∪∪     C)    →→→→  M ∪∪∪∪     C 

defined as the composite 

 (M ∪∪∪∪ C)   ⊔⊔⊔⊔         (M ∪∪∪∪ C)    =            (M  ⊔⊔⊔⊔     M)  ∪∪∪∪  (C  ⊔⊔⊔⊔     C)   →→→→  M ∪∪∪∪ C            

sending  x  ∈∈∈∈  M  ⊔⊔⊔⊔     M  to  h(x)  and  y  ∈∈∈∈ C  ⊔⊔⊔⊔     C   to   h0( y) .  It follows immediately 

that the element  (M ⊔⊔⊔⊔        C, k)  is strictly greater than (M, h), contradicting  the 

maximilaity of the latter.  The problem arises from our assumption that  | M |  and  | A |  

are unequal, and thus we have  | M |  =     | A |  and we have proved the statement about  

| A | ++++ | A |. 
 

Proof that  |A| ⋅⋅⋅⋅ |A|   ====   |A| .     Let  VVVV A  be the set of all pairs (B, f ) where B  ⊂⊂⊂⊂     A is 

a nonempty subset and  f : B  ××××     B    →→→→  B  is a  1 – 1 correspondence.  If we set (B, f )  

≤≤≤≤     (C, g )  if and only if  g(b1, b2)  ====  f (b1, b2)  for all  b1, b2  ∈∈∈∈     B  ××××     B,  then routine 

calculations show that  ≤≤≤≤     defines a partial ordering on VVVV A . 
 

The set VVVV A is nonempty because A contains a countably infinite subset  C, and we 

know that there is a 1 – 1 correspondence from C ××××    C to C. 
 

Suppose now that we have a linearly ordered subset of VVVV A whose elements have the 

form  (Bt,  ft ) , where t  lies in some indexing set.  The argument in the previous part of 

the proof extends to show that this linearly ordered set has an upper bound, whose 

graph is again the union of the graphs of the functions  ft  .  Therefore, once again Zorn’s 

Lemma implies the existence of a maximal element (M, h) and once again the 

conclusion is true if  | M |  =  | A |,  so suppose the latter is false.  It follows that we must 

have | M |  <  | A |.   In this case, if we also have  |A – M|   ≤≤≤≤        |M|  then  
 

|  A |  =  |M|  ++++ |A – M|   ≤≤≤≤        | M | ++++ | M |  =  | M | 
 

(by the additive identity shown in the first part of the theorem),  and therefore we must 

also have  | M|  <  |A – M|.  In fact, repeated application of the first part of the theorem 

also implies that  |M|  =  3 |M|  and consequently we also have 3 |M|  <  |A – M|.   
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The inequality |M|  <  |A – M|  implies the existence of a subset  N  ⊂⊂⊂⊂  A – M  such 

that  |N|  =  |M|,  and in fact the equation  |M|  =  3 |M|  implies that we may write  N  

as a union of pairwise disjoint subsets  N1,  N2,  N3 which have the same cardinality as 

M  and  N.  Define an extension of  h : M  ××××     M    →→→→  M  to  
 

k: (M    ∪∪∪∪ N) ××××    (M    ∪∪∪∪ N)    →→→→  M    ∪∪∪∪ N 
 

using the following breakdown by cases: 
 

(1) On M  ××××     M ,  k is given by h. 
 

(2) On M  ××××     N ,  k  is given by the composite  M ××××    N  ↔↔↔↔         N ××××    N  ↔↔↔↔         M ××××    M  

↔↔↔↔         M  ↔↔↔↔         N1 , where the 1 – 1 correspondences are determined by the 

standard maps M  ↔↔↔↔         N,  N  ↔↔↔↔         N1 , and M  ××××     M  ↔↔↔↔         M. 
 

(3) On N  ××××     M ,  k is given by the composite  N ×××× M  ↔↔↔↔         N ×××× N  ↔↔↔↔         M ×××× M  

↔↔↔↔         M  ↔↔↔↔         N2 , where the 1 – 1 correspondences are determined by the 

standard maps M  ↔↔↔↔         N,  N  ↔↔↔↔         N2 , and M  ××××     M  ↔↔↔↔         M. 
 

(4) On N ××××    N ,  k is given by  N ××××    N  ↔↔↔↔         M ×××× M   ↔↔↔↔         M   ↔↔↔↔         N3 ,  where the  

1 – 1  correspondences are determined by the standard maps  M  ↔↔↔↔         N,    

N  ↔↔↔↔         N3 , and M ××××    M  ↔↔↔↔         M. 
 

By construction we again have  (M        ∪∪∪∪  N, k)  is strictly greater than (M, h), 
contradicting the maximilaity of the latter.  The problem arises from our assumption that 

| M |  and  | A |  are unequal, and thus we have  | M |  =  | A |  and we have shown the 

statement of the theorem about | A | ⋅⋅⋅⋅ | A |. 

 

  


