Transfinite cardinal arithmetic III

This lecture describes some additional results and behavior patterns for transfinite cardinal numbers.

<u>Theorem (Absorption law for exponents)</u>. If α is a transfinite cardinal number then $\alpha^{\alpha} = 2^{\alpha}$.

PROOF. Choose A such that $|A| = \alpha$. Then a function from A to itself is completely determined by its graph, which is a subset of $A \times A$. This immediately yields an upper estimate $\alpha^{\alpha} \leq 2^{\alpha \times \alpha} = 2^{\alpha}$ (in Lecture 17A we showed that $\alpha \times \alpha = \alpha$ for every transfinite cardinal number α). On the other hand, by Theorem 5.4.16(3) in Cunningham, we also know that $2^{\alpha} \leq \alpha^{\alpha}$. Finally, by the Schröder – Bernstein Theorem these inequalities imply that $\alpha^{\alpha} = 2^{\alpha}$.

Of course, if n > 2 then 2^n is considerably smaller than n^n , so once again we see that the arithmetic of cardinal numbers is much different than ordinary arithmetic with nonnegative integers in some ways. We shall give one more example.

Definition. If X is a set then the <u>symmetric group</u> on X, denoted by $\Sigma(X)$, is the set of all 1 - 1 and onto mappings from X to itself. Note that if X is finite and has n elements then it follows that $\Sigma(X)$ has n! elements. The next result shows that the cardinality of $\Sigma(X)$ also depends only on the cardinality of $\Sigma(X)$ in the transfinite case.

Proposition. If |X| = |Y|, then $|\Sigma(X)| = |\Sigma(Y)|$.

PROOF. Let $\varphi: X \to Y$ be a 1 - 1 correspondence and consider the "conjugation" map $C(\varphi): \Sigma(X) \to \Sigma(Y)$ which sends the 1 - 1 onto map $f: X \to X$ to the composite $\varphi \circ f \circ \varphi^{-1}$. This mapping is also 1 - 1 onto because it is a composite of 1 - 1 onto maps. Furthermore, one can show that $C(\varphi)$ is 1 - 1 onto by verifying directly that an inverse is given by $C(\varphi^{-1}): \Sigma(Y) \to \Sigma(X)$.

The cardinality of $\Sigma(X)$ is given explicitly by the next result.

<u>Theorem (Cardinality of infinite symmetric groups)</u>. If X is infinite and $|X| = \alpha$, then $|\Sigma(X)| = \alpha^{\alpha} = 2^{\alpha}$. If X is finite and has n elements, so that $\Sigma(X)$ has n! elements, it seems worth noting that $2^n < n! < n^n$ for n > 2, and in fact the differences between consecutive terms in this inequality to to infinity as n tends to infinity.

PROOF. By definition $\Sigma(X)$ is contained in the function set F(X, X), and this yields the inequality $|\Sigma(X)| \leq \alpha^{\alpha}$. By the first theorem and the Schröder – Bernstein Theorem, it will suffice to show that $2^{\alpha} \leq |\Sigma(X)|$, and we shall do this by constructing a 1 - 1 map from $\mathcal{P}(X)$ to $\Sigma(X)$.

Since $\alpha + \alpha = \alpha$ we can split X into two subsets X_1 and X_2 such that there are 1 - 1 onto maps f_1 and f_2 from X to X_1 and X_2 . Let B be a subset of X, and define $T_B: X \to X$ as follows:

- 1. If x is in B then T_B interchanges $f_1(x)$ and $f_2(x)$.
- 2. If x is not in B then T_B sends $f_1(x)$ and $f_2(x)$ to themselves.

One can check directly that $T_B(x) \neq x$ if and only if x lies in $f_1[B] \cup f_2[B]$ and that T_B is 1 - 1 onto; in fact, T_B is equal to its own inverse. Furthermore, if B and D are different subsets of X then T_B and T_D are unequal. Therefore the construction sending B to T_B yields the desired 1 - 1 map from $\mathcal{P}(X)$ to $\Sigma(X)$, and as noted in the first paragraph this suffices to complete the proof of the theorem.

Subsequent material from this lecture will not be covered on the second in – class examination.