Transfinite cardinal arithmetic III

This lecture describes some additional results and behavior patterns for transfinite cardinal numbers.

Theorem (Absorption law for exponents). If $\boldsymbol{\alpha}$ is a transfinite cardinal number then $\alpha^{\alpha}=2^{\alpha}$.

PROOF. Choose \boldsymbol{A} such that $|\boldsymbol{A}|=\alpha$. Then a function from \boldsymbol{A} to itself is completely determined by its graph, which is a subset of $\boldsymbol{A} \times \boldsymbol{A}$. This immediately yields an upper estimate $\alpha^{\alpha} \leq 2^{\alpha \times \alpha}=2^{\alpha}$ (in Lecture 17A we showed that $\alpha \times \alpha=\alpha$ for every transfinite cardinal number $\boldsymbol{\alpha}$). On the other hand, by Theorem 5.4.16(3) in Cunningham, we also know that $2^{\alpha} \leq \alpha^{\alpha}$. Finally, by the Schröder Bernstein Theorem these inequalities imply that $\alpha^{\alpha}=2^{\alpha}$.■
Of course, if $n>2$ then 2^{n} is considerably smaller than n^{n}, so once again we see that the arithmetic of cardinal numbers is much different than ordinary arithmetic with nonnegative integers in some ways. We shall give one more example.

Definition. If \boldsymbol{X} is a set then the symmetric group on \boldsymbol{X}, denoted by $\boldsymbol{\Sigma}(\boldsymbol{X})$, is the set of all 1-1 and onto mappings from \boldsymbol{X} to itself. Note that if \boldsymbol{X} is finite and has \boldsymbol{n} elements then it follows that $\boldsymbol{\Sigma}(\boldsymbol{X})$ has \boldsymbol{n} ! elements. The next result shows that the cardinality of $\Sigma(\boldsymbol{X})$ also depends only on the cardinality of $\Sigma(\boldsymbol{X})$ in the transfinite case.

Proposition. If $|X|=|Y|$, then $|\Sigma(X)|=|\Sigma(Y)|$.
PROOF. Let $\varphi: X \rightarrow Y$ be a $\mathbf{1 - 1}$ correspondence and consider the "conjugation" map $\boldsymbol{C}(\varphi): \Sigma(\boldsymbol{X}) \rightarrow \boldsymbol{\Sigma}(\boldsymbol{Y})$ which sends the $\mathbf{1}-\mathbf{1}$ onto map $\boldsymbol{f}: \boldsymbol{X} \boldsymbol{X}$ to the composite $\varphi \circ f \circ \varphi^{-1}$. This mapping is also $\mathbf{1}-\mathbf{1}$ onto because it is a composite of $\mathbf{1 - 1}$ onto maps. Furthermore, one can show that $\boldsymbol{C}(\varphi)$ is $\mathbf{1} \mathbf{- 1}$ onto by verifying directly that an inverse is given by $C\left(\varphi^{-1}\right): \Sigma(\boldsymbol{Y}) \rightarrow \Sigma(X)$.

The cardinality of $\Sigma(\boldsymbol{X})$ js given explicitly by the next result.
Theorem (Cardinality of infinite symmetric groups). If X is infinite and $|X|=\alpha$, then $|\Sigma(X)|=\alpha^{\alpha}=2^{\alpha}$.

If X is finite and has n elements, so that $\Sigma(\boldsymbol{X})$ has n ! elements, it seems worth noting that $2^{\boldsymbol{n}}<\boldsymbol{n}!<\boldsymbol{n}^{\boldsymbol{n}}$ for $\boldsymbol{n}>2$, and in fact the differences between consecutive terms in this inequality to to infinity as n tends to infinity.

PROOF. By definition $\Sigma(X)$ is contained in the function set $F(X, X)$, and this yields the inequality $|\Sigma(X)| \leq \alpha^{\alpha}$. By the first theorem and the Schröder - Bernstein Theorem, it will suffice to show that $2^{\alpha} \leq|\Sigma(X)|$, and we shall do this by constructing a 1-1 map from $\mathcal{P}(X)$ to $\Sigma(X)$.

Since $\alpha+\alpha=\alpha$ we can split X into two subsets X_{1} and X_{2} such that there are 1-1 onto maps f_{1} and f_{2} from X to X_{1} and \boldsymbol{X}_{2}. Let B be a subset of X, and define $\boldsymbol{T}_{\boldsymbol{B}}: X \rightarrow X$ as follows:

1. If \boldsymbol{x} is in \boldsymbol{B} then $\boldsymbol{T}_{\boldsymbol{B}}$ interchanges $f_{1}(x)$ and $f_{2}(x)$.
2. If \boldsymbol{x} is not in \boldsymbol{B} then $\boldsymbol{T}_{\boldsymbol{B}}$ sends $\boldsymbol{f}_{\mathbf{1}}(\boldsymbol{x})$ and $\boldsymbol{f}_{\mathbf{2}}(\boldsymbol{x})$ to themselves.

One can check directly that $\boldsymbol{T}_{\boldsymbol{B}}(\boldsymbol{x}) \neq \boldsymbol{x}$ if and only if \boldsymbol{x} lies in $f_{1}[B] \cup f_{2}[B]$ and that $\boldsymbol{T}_{\boldsymbol{B}}$ is $\mathbf{1}-\mathbf{1}$ onto; in fact, $\boldsymbol{T}_{\boldsymbol{B}}$ is equal to its own inverse. Furthermore, if \boldsymbol{B} and \boldsymbol{D} are different subsets of \boldsymbol{X} then $\boldsymbol{T}_{\boldsymbol{B}}$ and $\boldsymbol{T}_{\boldsymbol{D}}$ are unequal. Therefore the construction sending \boldsymbol{B} to $\boldsymbol{T}_{\boldsymbol{B}}$ yields the desired $\mathbf{1}-\mathbf{1}$ map from $\mathcal{P}(\boldsymbol{X})$ to $\Sigma(\boldsymbol{X})$, and as noted in the first paragraph this suffices to complete the proof of the theorem.

Subsequent material from this lecture will not be covered on the second in - class examination.

