NAME:

# Mathematics 144, Fall 2006, Examination 1 

Answer Key

1. [20 points] Let $A$ and $B$ be sets (contained in some large set $S$ ). Prove the absorption law $A \cup(A \cap B)=A$.

## SOLUTION

We first note that $A \subset A \cup(A \cap B)=A$ because $x \in A$ implies $x \in A$ or $x \in A \cap B$ (in fact, the first is always true). Conversely, if $x \in A \cup(A \cap B)=A$ then $x \in A$ or $x \in A \cap B$. In the first case we know that $x \in A$, while in the second we know that $x \in A \cap B$, so that $x \in A$ and $x \in B$. In either case we see that $x \in A$, and therefore we must have $x \in A$, which implies $A \cup(A \cap B)=A$. Since each set is contained in the other, they are equal.
2. [20 points] Let $A$ be the set of all positive integers $n$ such that $100 \leq n \leq 999$, and let $E$ be the binary relation on $A$ given by $x E y$ if and only if the three digits in $x$ are rearrangements of the three digits in $y$; then $E$ is an equivalence relation, and you may assume this without proving it. Determine all elements of $A$ that are in the equivalence classes of the number $n$ for each of $n=111,122$, and 135 . [Hint: The combined number of integers in the three equivalence classes is equal to 10.]

## SOLUTION

The equivalence class of 111 only contains 111 , the equivalence class of 122 is given by $\{122,212,221\}$, and the equivalence class of 135 is given by $\{135,351,513,153,315,531\}$.
3. [20 points] Suppose that $A, B$ and $C$ are subsets of some set $S$. Prove that $A \times(B-C)=(A \times B)-(A \times C)$.

## SOLUTION

Once again we show that each is contained in the other. If $u \in A \times(B-C)$, then $u=(x, y)$ where $x \in A$ and $y \in B-C$. It follows that $(x, y) \in A \times B$ but $(x, y) \notin A \times C$, so we have $A \times(B-C) \subset(A \times B)-(A \times C)$.

Conversely, if $u \in(A \times B)-(A \times C)$, then $u=(x, y)$ where $x \in A$ and $y \in B$. However, since the pair does not belong to $A \times C$, we either have $x \notin A$ or $y \notin C$. The first does not happen because we already know that $x \in A$, and therefore we must have $y \notin C$, which means that $y \in B-C$. Therefore $y \in B-C$, so that $(x, y) \in A \times(B-C)$. Therefore we also have $(A \times B)-(A \times C) \subset A \times(B-C)$. Since each of the two sets is contained in the other, they are equal.
4. [25 points] (a) Let $X$ be the binary operation on the set $\mathbf{Z}$ of (signed) integers given by $a X b$ if and only if $b=a^{r}$ for some positive integer $r$. Prove that $X$ defines a partial ordering on $\mathbf{Z}$.
(b) If $a X b$, does it follow that $a \leq b$ in the usual ordering of the integers? Either prove this or give an example of an ordered pair $(a, b)$ where the first relation is true but the second is false.

## SOLUTION

(a) The relation is reflexive because $a=a^{1}$. To see it is symmetric, suppose we have $b=a^{r}$ and $a=b^{q}$. Then by the laws of exponents we have $a=a^{r q}$, which means that either $a=0$ or $r q=1$. In the first case it follows that $b=0^{r}=0=a$, while in the second it follows that $r=q=1$ so that $b=a$. To see the relation is transitive, note that if $b=a^{r}$ and $c=b^{q}$ then $c=a^{q r}$ again by the laws of exponents.
(b) The easiest way to see the answer is NO is to take $a=-2$ and $b=-8$, so that $b=a^{3}$ but $b<a$.
5. [15 points] Let $\mathbf{R}$ be the real numbers, and let $V$ be the binary relation on $\mathbf{R}$ defined by $x V y$ if and only if $y^{2}-x^{2}=1$. Give an example to show that $V$ is not transitive; in other words, find $a, b, c$ such that $a V b$ and $b V c$ are true but $a V c$ is false.

## SOLUTION

Take $(0,1)$ and $(1, \sqrt{2})$. Both lie in the subset of ordered pairs for which the relation is true, but the pair $(0, \sqrt{2})$ does not because $y^{2}-x^{2}=2$ in this case.

There are many other possibilities of this type; for example one can take $a=\sqrt{n}$, $b=\sqrt{n+1}, c=\sqrt{n+2}$, where $n$ is an arbitrary nonnegative integer.

