NAME:

Mathematics 144, Fall 2006, Examination 2

Answer Key

1. [30 points] (a) Is the set of all points $(x, y) \in \mathbf{R} \times \mathbf{R}$ such that $y^{2}=e^{x}$ the graph of a function? Give reasons for your answer.
(b) Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be the function $f(x)=4 x+6$. Let A and B be the closed intervals $[1,2]$ and $[-2,10]$ respectively. Find the image $f[A]$ and the inverse image $f^{-1}[B]$.
(c) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be onto (= surjective) functions. Prove that the composite $g^{\circ} f$ is also onto.

SOLUTION

(a) NO. If $y^{2}=e^{x}$ then also $(-y)^{2}=e^{x}$, so in particular the set includes the points $(0,1)$ and $(0,-1)$.
(b) The first of these is the set of all points describable as $4 x+6$ for $1 \leq x \leq 2$, which is merely the interval $[10,14]$, and the second is the set of all x such that $-2 \leq 4 x+6 \leq 10$, which is the interval $[-2,1]$.
(c) Let $c \in C$. Then there is some $b \in B$ such that $g(b)=c$ because g is onto. Similarly, since f is onto there is some $a \in A$ such that $b=f(a)$. It then follows that $g^{\circ} f(a)=g(f(a))=g(b)=c$, showing that $g \circ f$ is onto.
2. [25 points] (a) If $f:[0, \infty) \rightarrow[0,1)$ is the function

$$
f(x)=\frac{x^{2}}{x^{2}+1}
$$

then f is strictly increasing and defines a $1-1$ correspondence from its domain to its codomain, and hence it has an inverse function g. Find a formula for this inverse function.
(b) Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be the function $f(x)=2 x-1$ and let $g(x)=x+1$. Evaluate $g \circ f(2)-f \circ g(2)$.

SOLUTION

(a) We need to solve the equation

$$
y=\frac{x^{2}}{x^{2}+1}
$$

for x in terms of y. The right hand side can be rewritten as

$$
1-\frac{1}{x^{2}+1}
$$

and therefore we obtain the equation

$$
1-y=\frac{1}{x^{2}+1}
$$

so that

$$
x^{2}+1=\frac{1}{1-y}
$$

and hence

$$
x^{2}=\frac{y}{1-y} .
$$

Thus the inverse function is given by

$$
g(y)=\sqrt{\frac{y}{1-y}} .
$$

(b) We have $g \circ f(x)=2 x$ and $f \circ g(x)=2 x+1$. Therefore $g \circ f(x)-f \circ g(x)=1$ for all x and in particular for $x=2$.
3. [20 points] Prove by induction that

$$
1+3+\cdots+(2 n-1)=n^{2}
$$

for all $n \geq 1$.

SOLUTION

Let \mathbf{P}_{n} be the staatement displayed above. Then \mathbf{P}_{1} is true because both sides are equal to 1. - Now assume that \mathbf{P}_{k} is true; we need to show that \mathbf{P}_{k+1} is also true. But now

$$
1+3+\cdots+(2 k+1)=(1+3+\cdots+(2 k-1))+(2 k+1)
$$

and by the induction hypothesis (that \mathbf{P}_{k} is true) it follows that the first term on the right hand side is equal to k^{2}. Therefore the right hand side is equal to $k^{2}+2 k+1=(k+1)^{2}$, and consequently \mathbf{P}_{k+1} is also true if \mathbf{P}_{k} is true. Therefore, by the weak principle of finie induction we know that \mathbf{P}_{n} is true for every $n \geq 1$.
4. [25 points] (a) What is the least upper bound of the closed interval $[0,1]=\{x \in$ $\mathbf{R} \mid 0 \leq x \leq 1\}$ in the real numbers? Give reasons for your answer.
(b) A well-ordered set is a partially ordered set which satisfies an additional condition. State this condition.

SOLUTION

(a) The answer is $\mathbf{1}$. Every element in the set is less than or equal to 1 , so 1 is an upper bound. On the other hand, since 1 belongs to the set we also know that any upper bound u must be greater than or equal to 1 .
(b) Every nonempty subset has a least element.

