Mathematics 144, Fall 2006, Examination 2

Answer Key

1. [30 points] (a) Is the set of all points $(x, y) \in \mathbf{R} \times \mathbf{R}$ such that $y^2 = e^x$ the graph of a function? Give reasons for your answer.

(b) Let $f : \mathbf{R} \to \mathbf{R}$ be the function f(x) = 4x + 6. Let A and B be the closed intervals [1, 2] and [-2, 10] respectively. Find the image f[A] and the inverse image $f^{-1}[B]$.

(c) Let $f: A \to B$ and $g: B \to C$ be onto (= surjective) functions. Prove that the composite $g \circ f$ is also onto.

SOLUTION

(a) NO. If $y^2 = e^x$ then also $(-y)^2 = e^x$, so in particular the set includes the points (0, 1) and (0, -1).

(b) The first of these is the set of all points describable as 4x + 6 for $1 \le x \le 2$, which is merely the interval [10, 14], and the second is the set of all x such that $-2 \le 4x + 6 \le 10$, which is the interval [-2, 1].

(c) Let $c \in C$. Then there is some $b \in B$ such that g(b) = c because g is onto. Similarly, since f is onto there is some $a \in A$ such that b = f(a). It then follows that $g \circ f(a) = g(f(a)) = g(b) = c$, showing that $g \circ f$ is onto. 2. [25 points] (a) If $f: [0, \infty) \to [0, 1)$ is the function

$$f(x) = \frac{x^2}{x^2 + 1}$$

then f is strictly increasing and defines a 1–1 correspondence from its domain to its codomain, and hence it has an inverse function g. Find a formula for this inverse function.

(b) Let $f : \mathbf{R} \to \mathbf{R}$ be the function f(x) = 2x - 1 and let g(x) = x + 1. Evaluate $g \circ f(2) - f \circ g(2)$.

SOLUTION

(a) We need to solve the equation

$$y = \frac{x^2}{x^2 + 1}$$

for x in terms of y. The right hand side can be rewritten as

$$1 - \frac{1}{x^2 + 1}$$

and therefore we obtain the equation

$$1 - y = \frac{1}{x^2 + 1}$$

so that

$$x^2 + 1 = \frac{1}{1-y}$$

and hence

$$x^2 = \frac{y}{1-y} \, .$$

Thus the inverse function is given by

$$g(y) = \sqrt{\frac{y}{1-y}}$$
.

(b) We have $g \circ f(x) = 2x$ and $f \circ g(x) = 2x + 1$. Therefore $g \circ f(x) - f \circ g(x) = 1$ for all x and in particular for x = 2.

3. [20 points] Prove by induction that

$$1 + 3 + \dots + (2n-1) = n^2$$

for all $n \ge 1$.

SOLUTION

Let \mathbf{P}_n be the staatement displayed above. Then \mathbf{P}_1 is true because both sides are equal to 1. — Now assume that \mathbf{P}_k is true; we need to show that \mathbf{P}_{k+1} is also true. But now

$$1 + 3 + \dots + (2k+1) = \left(1 + 3 + \dots + (2k-1)\right) + (2k+1)$$

and by the induction hypothesis (that \mathbf{P}_k is true) it follows that the first term on the right hand side is equal to k^2 . Therefore the right hand side is equal to $k^2 + 2k + 1 = (k+1)^2$, and consequently \mathbf{P}_{k+1} is also true if \mathbf{P}_k is true. Therefore, by the weak principle of finie induction we know that \mathbf{P}_n is true for every $n \ge 1$. 4. [25 points] (a) What is the least upper bound of the closed interval $[0, 1] = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$ in the real numbers? Give reasons for your answer.

(b) A well-ordered set is a partially ordered set which satisfies an additional condition. State this condition.

SOLUTION

(a) The answer is 1. Every element in the set is less than or equal to 1, so 1 is an upper bound. On the other hand, since 1 belongs to the set we also know that any upper bound u must be greater than or equal to 1.

(b) Every nonempty subset has a least element.