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Exercises for Unit I I I (Elementary constructions on sets) 

 
 

I I I.1 : Boolean operations 
 

(Halmos, §§ 4 – 5;  Lipschutz, §§ 1.6 – 1.7) 
 
 
Problems for study. 
 
 
Lipschutz : 1.9, 1.12 [  misprint:  In the first sentence, the expression B ∩∩∩∩ A should be 
replaced by B ∩∩∩∩ Ac ]  , 1.18 – 1.19, 1.46 – 1.47, 1.48 (gh), 1.50, 1.52, 1.54 – 1.55, 11.14  
 
 
Exercises to work.   
 
 
1.  Give examples of sets A, B, C such that each of the three pairwise intersections 
A  ∩∩∩∩  B, A  ∩∩∩∩  C, B  ∩∩∩∩  C is nonempty but the total intersection A  ∩∩∩∩  B  ∩∩∩∩  C is empty 
(this illustrates the importance of recognizing the difference between a disjoint collection 
of sets and a pairwise disjoint collection of sets). 
 
2.  Is it possible to find a non – disjoint collection of sets A, B, C such that at least 
one pairwise intersection is empty?  Prove this or give a counterexample. 
 
3.  Prove that unions and intersections satisfy the pair of identities A ∩∩∩∩ (B ∪∪∪∪ A)  =  A  
and  A ∪∪∪∪ (B ∩∩∩∩ A)  =  A (these are called the absorption laws). 
 
4.   (Rosen, Exercise 18, p. 95) Let A, B, C be subsets of some fixed set S.  Prove 
that  
 

(A – B)  –  C   =   (A – C)  –  (B – C). 
 
5.   (Rosen, Exercise 21, p. 95)  What can one say about the sets A and B if we 
know the following? 
 

(a)    A  ∪∪∪∪  B   =   A. 
(b)    A  ∩∩∩∩  B   =   A. 
(c)    A – B   =   A.  
(d)    A  ∩∩∩∩  B   =   B  ∩∩∩∩  A  . 
(e)    A – B   =   B – A. 
 

6.  Prove or give a counterexample for the following statement:  If A, B, C are 
subsets of some set S and A  ∪∪∪∪  C   =   B  ∪∪∪∪  C , then A  =  B  .   
 
7.  Prove or give a counterexample for the following statement:  If A and B are 
subsets of some set S and A  ∩∩∩∩  B   =   A  ∪∪∪∪  B  , then A  =  B  .   
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8.   (Rosen, Exercise 22, p. 95)  Can one conclude that A  =  B if A and B are 
subsets of some set S and satisfy the following?  There are actually three parts to this 
problem, corresponding to whether (1), (2), or both are known to be true.  Give reasons 
for your answer in all three cases. 
 

(1) A  ∪∪∪∪  C  =  B  ∪∪∪∪     C. 
(2) A  ∩∩∩∩  C  =  B  ∩∩∩∩     C. 

 
9.   (Rosen, Exercise 41, p. 116)  Let A, B, C be subsets of some fixed set S.  Show 
that the set (A – B)  –  C is not necessarily equal to A  –  (B – C). 
 
10.   (Rosen, Exercise 43, p. 116)  Let A, B, C, D be subsets of some fixed set S.  
Prove or disprove that (A – B)  –  (C – D)   =   (A – C)  –  (B – D). 
 
11.   (Rosen, Exercise 14, p. 95) Let A, B, C be subsets of some fixed set S.  Prove 
that the following hold: 
 

(a)    A  ∪∪∪∪ B   ⊂⊂⊂⊂  (A ∪∪∪∪ B)  ∪∪∪∪  C. 
(b)    (A ∩∩∩∩ B)  ∩∩∩∩  C   ⊂⊂⊂⊂   A ∩∩∩∩ B. 
(c)    (A – B)  –  C   ⊂⊂⊂⊂   A  –  C.  
(d)    (A – C)  ∩∩∩∩  (C – B)   =   Ø. 
(e)    (B – A)  ∪∪∪∪  (C – A)   =   (B ∪∪∪∪ C)  –  A. 

 
12.  Suppose that we are given sets A, B, C, D such that A  ⊂⊂⊂⊂     C and B  ⊂⊂⊂⊂     D.  Prove 
that  A  ∪∪∪∪     B   ⊂⊂⊂⊂            C  ∪∪∪∪  D and A  ∩∩∩∩     B   ⊂⊂⊂⊂            C  ∩∩∩∩  D . 
 
13.  Suppose that A and B are subsets of a given set S.   Prove that A   ⊂⊂⊂⊂            B if and 
only if S – B   ⊂⊂⊂⊂            S – A  . 
 
14.   (Halmos, p. 16)  Let A, B, and C be subsets of a given set S.   Prove that one 
has the mixed associativity (also known as modularity) property  
 

(A ∩∩∩∩ B)   ∪∪∪∪         C     =     A   ∩∩∩∩         (B ∪∪∪∪ C) 
 
if and only if C  ⊂⊂⊂⊂     A  ; in particular, the criterion has nothing to do with B. 
 
  
 

I I I.2 : Ordered pairs and products 
 

(Halmos, §§ 3, 6;  Lipschutz, §§ 3.1 – 3.2) 
 
 
 
Problems for study.   
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Lipschutz : 3.2 – 3.4, 3.35 – 3.36, 3.39 – 3.40 
 
 
Exercises to work.   
 
 
1.  Prove the following identities for Cartesian products:                                                            
                                                                                 

(1) A  ×××× (B  ∩∩∩∩  D)  =  (A  ××××     B)  ∩∩∩∩  (A  ××××  D) 
                                                                                 

(2) A  ××××     (B  ∪∪∪∪  D)  =   (A  ××××  B)  ∪∪∪∪  (A  ××××  D) 
                                                                                 

(3) A  ××××  (Y – D )  =  (A  ×××× Y)  –  (A  ××××     D) 
                                                                                 

(4) (A  ××××  B)  ∩∩∩∩  (C  ××××  D)  =   (A  ∩∩∩∩  C)  ××××  (B  ∩∩∩∩     D) 
                                                                                 

(5) (A ×××× B)  ∪∪∪∪     (C  ×××× D)   ⊂⊂⊂⊂   (A  ∪∪∪∪  C)  ×××× (B  ∪∪∪∪  D) 
                                                                                 

(6) (X  ××××  Y)  –  (A  ×××× B)  =  [ X ×××× (Y – B) ]  ∪∪∪∪ [ (X – A)  ×××× Y ] 
 
2.   (Part of Halmos, p. 25)  Let A and B be sets.  Explain why A ××××    B is empty if 
either A is empty or B is empty. 
 
3.  Suppose that A and B are sets such that  (A  ××××  B)  ∩∩∩∩  (B  ××××  A)  is empty.  What 
conclusion can be drawn regarding A and B?    
 
 
 

I I I.3 : Larger constructions 
 

(Halmos, §§ 3, 5 – 6, 9;  Lipschutz, §§ 1.9, 3.1 – 3.2, 5.1 – 5.2) 
 
 
 
Problems for study.   
 
Lipschutz : 1.66(b), 3.35, 5.1, 5.3, 5.28, 5.31 
 
 
Exercises to work.   
 
1. Let F be the family of all closed intervals on the real line having the form [–M, M]  , 
where a real number x belongs to [–M, M]   if and only if the absolute value of x is less 
than or equal to the positive real number M.  Describe $(F) and ∩∩∩∩ {B  |  B  ∈∈∈∈  F }.  What 
happens if instead we look at the family of open intervals having the form (–M, M) , 
where a real number x belongs to (–M, M)  if and only if the absolute value of x is strictly 
less than the positive real number M? 
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2. For each integer n  > 1 let L(n) be the set of all real numbers x such that xn  <  x  , 
and let F be the family of all subsets having the form L(n) for some n > 1.   Describe $(F) 
and ∩∩∩∩ {B  |  B  ∈∈∈∈  F }. 
 
3.   (Halmos, p. 20) Prove that power set construction satisfies the algebraic 
conditions P(A) ∩∩∩∩ P(B)  =  P(A ∩∩∩∩ B) and P(A)  ∪∪∪∪  P(B)   ⊂⊂⊂⊂         P(A  ∪∪∪∪  B).  More generally, 
prove that  

 
∩∩∩∩    A ∈∈∈∈ C P(A)  =  P( ∩∩∩∩     A ∈∈∈∈ C  A) if C is nonempty and 

 
∪∪∪∪    A ∈∈∈∈ C P(A)  ⊂⊂⊂⊂  P( ∪∪∪∪    A ∈∈∈∈ C  A) if C is arbitrary. 

 
In the case of unions, give an example for which the containment is proper. 
 
4.   (Rosen, Exercise 16, p. 85)  Can we conclude that A  =  B if P(A)  =  P(B)?  
Give reasons for your answer. 
 

Defining ordered triples.  A method for defining ordered pairs of 
sets formally is described on page 23 of Halmos (see the bottom 
half of the page), and the next few pages contain remarks about 
the definition.  Specifically, Halmos defines the ordered pair (a, b) 
to be { {a}, {a, b} }.   One can use this to define an ordered triple 
(a, b, c) in terms of ordered pairs by the rule 

 
(a, b, c)    =    ( (a, b) , c ). 

 
 
5.  Explain why (a, b, c)  =  (x, y, z) if and only if a  =  x, b  =  y and c  =  z. 
 
6.  Prove that the construction 〈 a, b, c     〉  =  { {a}, {a, b}, {a, b, c}  } does not  

satisfy the property of ordered triples established in the preceding  exercise.    [  Hint : 
One can show that the property holds if a  =  b  =  c or all three of a, b, c are distinct, so 
the search for counterexamples should begin by looking at cases where exactly two of 
the sets are equal. ] 
 
 
 

I I I.4 :  A convenient assumption 
 

(Halmos, §§ 2;  Lipschutz, § 1.12) 
 
 
Exercises to work.   
 
1.  The Axiom of Foundation implies that one cannot have an infinite sequence of 
sets xk (for k  ≥≥≥≥     0) such that xk   ∈∈∈∈  x  k – 1 for all k  >  0.  We shall say that a nonempty 
set x has Russell type equal to n if there exists a sequence of the form  
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xn  ∈∈∈∈  x  n – 1  ∈∈∈∈  …  ∈∈∈∈  x1  ∈∈∈∈  x 

 
but there are no sequences such that y  n + 1  ∈∈∈∈      …  ∈∈∈∈     y1  ∈∈∈∈     x.  By definition, the empty 
set will have Russell type 0.  Prove that for each nonnegative integer n there is a set 
with Russell type n.  [  Hint :  If a set x has Russell type equal to k, what is the Russell 
type of {  x  }?  ] 
 

Note.  One can extend this to say that a set has infinite Russell type if 
for each n there is a sequence xn  ∈∈∈∈  x  n – 1  ∈∈∈∈  …  ∈∈∈∈  x1  ∈∈∈∈  x.  On the 
basis of what we have done thus far, we cannot conclude that such 
sets exist, but this will follow from the material in Unit V. 

 
2.  Let us say that a set has finite Russell type if it has Russell type n for some 
nonnegative integer n.  Prove that the union of two sets with finite Russell type also has 
finite Russell type.   
 
3.  Suppose that we define the ordered pair (x, y) to be the set { {x}, {x, y} } as in 
pages 23 – 25 of Halmos (and elsewhere!) rather than assume its existence.  Prove that 
if A and B are two sets with finite Russell type, then their Cartesian product also has 
finite Russell type. 
 
4.  If the set A has finite Russell type, is the same true of the power set P(A)?  If this 
is true and the Russell type of A is n, then what is the Russell type of P(A)? 
 


