
 14 

Exercises for  Unit I  V (Relations and functions) 
 
 

 
IV.1 : Binary relations 

 
(Halmos, § 6;  Lipschutz, §§ 3.3 – 3.9, 3.11, 7.1 – 7.6, 7.8) 

 
 
Problems for study.   
 
Lipschutz : 3.6(a), 3.7(b), 3.11, 3.12(b), 3.13 – 3.14, 3.16 – 3.18, 3.23 – 3.25, 3.29 – 
3.30, 3.32 – 3.33, 3.41(ab), 3.45 – 3.50, 3.55, 3.57. 
 
Exercises to work.   
 
1.   (Rosen, Exercise 3, p. 480)  Determine whether each of the following relations 
on the set {1, 2, 3, 4} is reflexive, symmetric, antisymmetric or transitive. 
 

(a) { (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4) } 
(b) { (1, 1), (2, 2), (2, 1), (1, 2), (3, 3), (4, 4) } 
(c) { (2, 4), (4, 2) } 
(d) { (1, 2), (2, 3), (3, 4) } 
(e) { (1, 1), (2, 2), (3, 3), (3, 4) } 
( f  ) { (1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4) } 

 
2.   (Taken from Rosen, Exercise 6, p. 480)  Determine whether the relations 
described by the conditions below are reflexive, symmetric, antisymmetric or transitive.   
 

(c) All ordered pairs of real numbers (x, y) such that x – y is rational. 
(d) All ordered pairs of real numbers (x, y) such that x  =  2y. 
(e) All ordered pairs of real numbers (x, y) such that x  y  ≥≥≥≥  0. 
(f) All ordered pairs of real numbers (x, y) such that x  y  =  0. 

 
3.   (Taken from Rosen, Exercise 7, p. 480)  Determine whether the relations 
described by the conditions below are reflexive, symmetric, antisymmetric or transitive.   
 

(a) All ordered pairs of real numbers (x, y) such that x   ≠≠≠≠         y. 
(b) All ordered pairs of real numbers (x, y) such that x  y  ≥≥≥≥  1. 
(c) All ordered pairs of real numbers (x, y) such that x  =  y  ±±±±  1. 
(g) All ordered pairs of real numbers (x, y) such that x  =  y2. 
(h) All ordered pairs of real numbers (x, y) such that x  ≥≥≥≥  y2. 

 
4.   (Taken from Rosen, Exercise 7, p. 533)   Suppose that R1 and R2 are reflexive 
relations on a set A.  Are their union and intersection reflexive?  Give reasons for your 
answer. 
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5.   (Taken from Rosen, Exercise 1, p. 513)  Which of the relations described below 
on the set {0, 1, 2, 3} are equivalence relations?  Determine the properties of an 
equivalence relation that the others lack.  
 

(a) { (0, 0), (1, 1), (2, 2), (3, 3) } 
(b) { (0, 0), (0, 2), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3) } 
(c) { (0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3) } 
(d) { (0, 0), (1, 1), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3) } 
(e) { (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 2), (3, 3) } 

 
6.   (Taken from Rosen, Exercise 2, p. 513)  Which of the relations described below 
on the set of all people are equivalence relations?  Determine the properties of an 
equivalence relation that the others lack.  
 

(a) All a and b such that a and b have the same age. 
(b) All a and b such that a and b have the same parents. 
(c) All a and b such that a and b have a common parent. 
(d) All a and b such that a and b have met.  
(e) All a and b such that a and b speak a common language.  

 
7.  Let R be a binary relation that is reflexive and transitive, and define a new binary 
relation S such that x S y if and only if x R y and y R x.  Prove that S is an equivalence 
relation. 
 
8.   (Taken from Rosen, Exercise 10, p. 533)   A relation R is said to be circular if it 
satisfies a R b and b R c imply c R a.  Show that R is an equivalence relation if and only 
if it is reflexive and circular. 
 
9.  Let R denote the real numbers, and let P be the binary relation on R ×××× ( R – {0} ) 
such that (x, y)  P  (z, w) if and only if x  w  =  y  z.  Prove that P is an equivalence 
relation, and show that every equivalence class contains a unique element (or 
representative) of the form (r, 1). 
 
10.  Let N 

+
 be the set of all positive integers, and define a binary relation Q on the set 

N 
+
 ×××× N 

+ 
such that (x, y)  Q  (z, w)  if and only if x  

w  =  z 
y

 .  Determine whether Q is an 
equivalence relation. 
 
11.  Let R be the binary relation in Algebraic Example 3 (the set is a chessboard, and 
the relation is that two squares are related if there is a knight’s move from one to the 
other). 
 

(i) Let E be the equivalence relation generated by R.  Show that E contains 
exactly one equivalence class; in other words, starting from the standard 
position of (1, 2) the knight can reach every point on the chessboard. 

 
(ii) Suppose that we replace our 8 ×××× 8 chessboard with an infinite board whose 

elements are ordered pairs of integers.  Prove that in this case the 
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equivalence relation E generated by R also has one point.  [  Hint  : Start at the 
origin, and show that every adjacent square is E – related to it. ] 

 
12.   (Taken from Rosen, Exercise 38, p. 481)  Let R1 be the relation “ a divides b”  on 
the positive integers, and let R2 be the relation “ a is a multiple of b”  on positive integers.  
Describe the relations R1  ∪∪∪∪     R2 and R1  ∩∩∩∩     R2 .  
 
13.    Given two binary relations S and T on a set A, their composite S T is defined to 

be all (x, z) ∈∈∈∈ A ×××× A such that there is some y ∈∈∈∈ A for which x S y and y T z.  If A is the 
real line and S and T are the relations  
 

u S v if and only if |u|  =  |v| 
 

u T v if and only if |u + 1|  =  |v – 2| 
 
then find all real numbers z such that 1 S T z and all real number z such that 2 S T z.   
[  Hint:  the first relation amounts to saying that v  =  a u where a  =  ±±±± 1, and the second 

amounts to saying that v – 2  =  b(u – 1) where once again b  =  ±±±± 1.  Why does this 
imply that there are at most four choices for z in each case?  ] 
 
14.    Let S, T1 and T2 be binary relations on a set A.  Prove that we have S (T1 ∪∪∪∪T2)  

=  (S T1) ∪∪∪∪ (S T2) and S (T1 ∩∩∩∩    T2)  ⊂⊂⊂⊂  (S T1) ∩∩∩∩ (S T2).  Find an example where the 
inclusion in the second statement is proper. [  Hint:  There is an example for which A has 
four elements. ] 
 
 

IV.2 : Partial and linear orderings 
 

(Halmos, § 14;  Lipschutz, §§ 3.10, 7.1 – 7.6) 
 
 
Problems for study.   
 
Lipschutz : 7.1, 7.3 – 7.5, 7.9, 7.11, 7.27(b), 7.41 – 7.42, 7.52. 
 
Exercises to work.   
 
1.    Let P1 and P2 be partial orderings on the set A.  Prove that P1  ∩∩∩∩     P2 is a partial 
ordering, and give an example to show that P1  ∪∪∪∪     P2 is not necessarily a partial 
ordering. 
 
2.    (Rosen, Exercise 10, p. 528)  Let S  =  {1, 2, 3, 4} with the usual ordering, and 

take the lexicographic ordering on S ×××× S.  Find all elements of S ×××× S which are less than 

(2, 3), and find all elements of S ×××× S which are greater than (3, 1). 
 
3.    Let J be the set of closed intervals in the real numbers, and define a binary 
relation P such that [a,b] P [c,d] if and only if [a,b]  =  [c,d] or b < c.   
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  (1)  Show that P defines a partial ordering on J. 
 

(2)  Show that two elements of P are comparable if and only if they are equal 
or disjoint.   

 

(3)  Show that P is not a linear ordering on J. 
 
4.    Let S be the set {1, … , n}.  Prove that P(S) has a linearly ordered subset T with 
n + 1  elements but S does not contain a linearly ordered subset with n + 2 elements. 
 
5.   Let R[t] be the set of all polynomials with real coefficients, and define p  ≤≤≤≤  q if 
and only if p(x)  ≤≤≤≤  q(x) for all real values of x.  Prove this defines a partial ordering of 
R[t], but that this partial ordering is not a linear ordering. 
 
6.   (Taken from Rosen, Exercise 26, pp. 528 – 529)   Answer these questions for 
the partially ordered set represented by following Hasse diagram (the latter is defined 
with an example on page 170 of Lipschutz): 
 

 
 

(a) Find the maximal elements. 
(b) Find the minimal elements. 
( c  ) Is there a greatest element? 
(d  ) Is there a least element?  
(e ) Find all upper bounds of {a, b, c}.  
( f  ) Find the least upper bound of {a, b, c} if it exists. 
(g) Find all lower bounds of {f, g, h}. 
(h) Find the greatest lower bound of {f, g, h} if it exists. 

  
7.   Let (X, ≤≤≤≤ ) be a linearly ordered set, and let a, b, c be three distinct elements of X.  
We shall say that b is between a and c if either a  <  b  <  c or c  <  b  <  a is true.   
Explain why if b is between a and c, then b is also between c and a, and also prove that 
if (X, ≤≤≤≤ ) is a linearly ordered set such that x, y, z are three distinct elements of X, then 
one and only one of these elements is between the other two. 
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IV.3 : Functions 
 

(Halmos, §§ 9 – 10;  Lipschutz, §§ 3.3 – 3.9, 4.1 – 4.4, 5.6, 5.8) 
 
 
Problems for study.   
 
Lipschutz : 4.1 – 4.2, 4.3(ac), 4.7, 4.8, 4.33, 4.35, 4.37. 
 
Exercises to work.   
 
1.  Let P be the set of all U. S. presidents, and let G be the set of all ordered pairs 
(a, b) in P ×××× P such that b succeeded a in office.  Is G the graph of a function?  Explain 
your answer. 
 
2.  Let A and x be sets.  Prove that there is a unique function from A to {  x  } .  It 
might be helpful to split the proof into two cases depending upon whether or not A is 
empty.    
 
3.   (Halmos, p. 33)  Prove that for each set X there is a unique function from the 
empty set to X, regardless of whether or not X is nonempty.  Also prove that there are no 
functions from X to the empty set if X is nonempty. 
 

4.   (Taken from Rosen, Exercise 4, p. 108)   Find the domain and range of the 
function which assigns to each nonnegative integer its last digit. 
 

5.   (Taken from Rosen, Exercise 7, p. 109)   Find the domain and range of the 
function which assigns to each positive integer the number of digits 1, 2, 3, 4, 5, 6, 7, 8, 
9 that do not appear in the base 10 decimal expansion of the integer. 
 

6.   Let f : R →→→→ R be the function f  (x)  =  3x – 7. Compute the following sets:  
  

(i)   f  – 1 [ {3} ] 
(ii)   f [ {5} ] 
(iii)  f  – 1[ [–7, 2] ] 
(iv)   f   [ [2, 6] ] 
(v)   f   [  Ø ] 
(vi)   f  – 1[ [3, 5]  ∪∪∪∪  [8, 10] ] 

 
7.   Let f : R →→→→ R be the function f  (x)  =  (x + 1)2.  Compute the following sets: 
  

(i)   f [ {–1} ] 
(ii)   f  – 1[ [0,1] ] 
(iii)   f  – 1[ [–1, 1] ] 
(iv)   f [ [–1, –1]  ∪∪∪∪  [1, 3] ] 
(v)   f [ f  – 1[ [–3, –1] ] ] 
(vi)   f [ f  – 1[ [–1, 1] ] ] 
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IV.4 : Composite and inverse functions 
 

(Halmos, § 10;  Lipschutz, §§ 4.3 – 4.4, 5.7) 
 
 
Problems for study.   
 
Lipschutz : 4.11 – 4.14, 4.17 – 4.18, 4.20, 4.22, 4.39(b), 4.45 – 4.46. 
 
Exercises to work.   
 
1.  Suppose that X is linearly ordered set, Y is a partially ordered set, and f : X  →→→→  Y 
is strictly increasing (i.e., a  <  b implies f(a)  <  f(b) for all a, b).  Prove that f is 1 – 1.  
Give an example to show that this fails if X is not linearly ordered.   
 
2.  Suppose that A and B are sets.  Show that the mapping  
 

h : P(A) ×××× P(B)  →→→→  P(A ×××× B) 
 

which sends (C, D) to C ×××× D  ⊂⊂⊂⊂        A ×××× B is 1 – 1, and give an example to show it is not 
necessarily onto.   
 
3.   (Taken from Rosen, Exercise 10, p. 109)   Determine whether each of the 
following functions from the set {a, b, c, d} to itself is injective. 
 

(a) The function sending the ordered quadruple (a, b, c, d) to (b, a, c, d).  
(b) The function sending the ordered quadruple (a, b, c, d) to (b, b, d, c). 
(c) The function sending the ordered quadruple (a, b, c, d) to (d, b, c, d).  

 
4.   (Taken from Rosen, Exercise 18, p. 109)   Determine which of these functions 
are bijections from the set of real numbers to itself.   
 

(a) f(x)   =   – 3x  + 4.  
(b) f(x)   =   – 3x2  + 7. 
(c) f(x)   =   (x + 1) / (x + 2) .  
(d) f(x)   =   x5 + 1. 

 
5.  A function f : A  →→→→  B is called a formal monomorphism if for all functions g, h : 
C  →→→→  A, the equation f  g  =  f  h implies g  =  h.  Prove that f is a formal monomorphism if 
and only if f is injective. 
 
6.  Similarly, a function f : A  →→→→  B is called a formal epimorphism if for all 
functions g, h : B  →→→→  D, the equation g  f  =  h  f implies g  =  h.  Prove that f is a formal 
epimorphism if and only if f is surjective. 



 20 

 
7.   (Halmos, p. 41)  Let X and Y be nonempty sets, and let f : X  →→→→  Y be a function.   
 

(a) Prove that f(A ∩∩∩∩ B)  =  f(A) ∩∩∩∩ f(B) for all subsets A and B of X if and only if 
f is 1 – 1. 

(b) Prove that f(X – A)  ⊂⊂⊂⊂  Y – f(A) for all subsets A of X if and only if f is 1 – 1. 
(c) Prove that Y – f(A)  ⊂⊂⊂⊂  f(X – A) for all subsets A of X if and only if f is onto. 

 
8.  Let A and B be nonempty sets, and let f : A  →→→→  B be a 1 – 1 function.  Prove 
that there is a one – sided inverse g : B  →→→→  A; i.e., we have g  f  =  id  A .  [ Hint  :  Given 

an element z  ∈∈∈∈     A  , define g as follows:  If b  ∈∈∈∈     B can be written as f(a) for some a, 
then set g(b)  =  a; this is well – defined because f is injective.  Otherwise, let g(b)  =  z. ] 
 
9.  A function f : A  →→→→  B is called a retract if there is a function g : B  →→→→  A such 
that g  f  =  1A .  Prove that every retract is a monomorphism (this is a converse to a 
previous exercise).  Also prove that the associated map g is an epimorphism. 
 
10.  A function f : A  →→→→  B is called a retraction if there is a function g : B  →→→→  A such 
that f  g  =  1B .  Prove that every retraction is an epimorphism (this is a converse to a 
previous exercise).  Also prove that g is a monomorphism. 
 
11.  Let [0, 1] be the closed unit interval, and let a and b be real numbers which 
satisfy a  <  b.  Construct a bijection from [0, 1] to [a, b].  Is it unique? 
 
12.  Give examples of composable functions f and g such that g f is a bijection but 
neither f nor g is a bijection.  If g f is a bijection, is either of g or f an injection or a 
surjection?  The preceding question has four separate parts. 
 
13.  Find the inverse functions to p(x)  =  3x – 1 and q(x)  =  x/(1 + |x|), where the 
domains of both functions are the real numbers, the codomain of p is also the reals, and 
the codomain of q is ( –1, 1).  [ Hint  :   In the second example it is useful to consider two 
cases depending upon whether x  ≥≥≥≥  0  or x  ≤≤≤≤  0. ] 
  
14.   (Rosen, Example 24, pp. 107 – 108)  For each real number x, let int(x) be the 
greatest integer that is less than or equal to x.  Prove that  
 

int(2x)  =  int(x)  + int(x + ½). 
 
15.   (Rosen, Exercise 67, p. 111)  Prove or disprove the following statements:   
 

  (1)  For all x and y,  int(x + y)  =  int(x)  + int(y)  
 (2)  For all x and y,  int(x)  + int(y) + int(x + y)  =  int(2x)  + int(2y) 
 
16.    (Rosen, Exercise 68, p. 111)  Prove that  
 

int(3x)  =  int(x) +  int(x + ����) +  int(x + ����). 
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17.   (Taken from Rosen, Exercise 20, p. 109)   Let f be a function on the real 
numbers which is positive valued and let g  =  1 / f.  Explain why f is strictly increasing if 
and only if g is strictly decreasing. 

18.  Prove the Complement to Proposition IV.4.5 that was stated without proof in 
the notes:  Suppose we have a function f : A  →→→→  B and two factorizations of f as j  0  q  0  
and  j  1  q  1  where the maps q  t are surjective and the maps j t are injective for t  =  0, 1.  
Denote the codomain of q  t (equivalently, the domain of j  t ) by C t.  Then there is a unique 
bijection H: C 0  →→→→  C 1 such that H q  0  =  q  1 and j  1 H  =  j  0.   —  [  Hint  :  The mapping H 
should be defined so that if y  =  q  0 (x), then H(y)  =  q  1 (x).  One major step is to show 
this is well – defined; i.e., if q  0 (x) =  q  0 (w), then q  1 (x) =  q  1 (w) .  This is one place in 
the proof where the factorization assumptions play an important role.  The next steps are 
to show that H is injective and surjective.  Finally, it is necessary to prove the 
uniqueness of H. ] 

 
 

IV.5 : Constructions involving functions 
 

(Halmos, § 8;  Lipschutz, § 5.7) 
 
 
Problems for study.   
 
Lipschutz : 5.19, 5.49. 
 
Exercises to work.   
 
1.  Given two equivalence relations R 1 and R 2 on a set X, let G 1 and G 2 be the 
partitions of X that they determine.  The cross partition G 1, 2 is the partition whose 
equivalence classes have the form C  ∩∩∩∩  D , where C is an equivalence class of G 1 and 
D is an equivalence class of G 2.   Let p  1 : X  →→→→  X / R 1 and p  2 : X  →→→→  X / R 2 be the 

equivalence class projections, and let q : X  →→→→  (X / R 1)  ××××        (X / R 2) be the map such that 
the coordinates of q(x) are p  1 (x) and p  2 (x) respectively.  Prove that the sets in the cross 
partition are the inverse images of points under the mapping q. 
 
2.   Prove the exponential  laws stated in Theorem IV.5.5 of the notes: If A, B 
and C are sets,  then there is a 1 – 1 correspondence between (B ×××× C) 

A  and B  
A ×××× C 

A,  
and there is also a 1 – 1 correspondence between (C 

B) 
A  and C 

B 
 
××××

 
A.   —   [  Hints  :  For 

the first part, let p and q be the projections from B ×××× C to B and C respectively, then 
define a map from (B ×××× C) A  and B  

A ×××× C 
A sending f : A  →→→→  B ×××× C to the ordered pair (p 

f, q f), and show this map is a bijection.  For the second part, define mappings   
 

ΦΦΦΦ    : C 
B

 
××××

 
A  →→→→       (C 

B) 
A         

 

and        ΨΨΨΨ    in the opposite direction as follows:  Given f : B ×××× A  →→→→  C, let ΓΓΓΓ  ⊂⊂⊂⊂     (B ×××× A) ×××× C 
be its graph; for each a  ∈∈∈∈        A, explain why there is a unique function g  a : B  →→→→  C whose 
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graph is equal to  q  B,C [  ΓΓΓΓ        ∩∩∩∩     ( B ×××× {  a } ) ×××× C ], where q  B,C is the projection from the set 

(B ×××× A) ×××× C onto B ×××× C.  Define ΦΦΦΦ ( f  )  =  g, where the value of g at  a ∈∈∈∈    A is the 

function g  a .  Conversely, given g : A  →→→→  C 
B, for each a ∈∈∈∈    A  let ΓΓΓΓ(a)  ⊂⊂⊂⊂     (B ×××× A) ×××× C 

be the graph of g(a), and show that the set ΓΓΓΓ,,,,    consisting of all  
 

( (b, a) , c)  ∈∈∈∈         (B ×××× A)  ×××× C 
 

such that (b, c) ∈∈∈∈        ΓΓΓΓ    (a)    ,,,, is the graph of a function f  : B ×××× A  →→→→  C, and set ΨΨΨΨ (g) equal to 
f.  Complete the proof by checking that ΨΨΨΨ    ΦΦΦΦ    ( f  )  =  f and ΦΦΦΦ    ΨΨΨΨ (g)  =  g for all f and g. ] 
 
 

IV.6 : Order types 
 

(Halmos, § 18;  Lipschutz, §§ 7.7 – 7.10) 
 
 
Problems for study.   
 
Lipschutz : 7.68, 7.73 – 7.74. 
 
Exercises to work.   
 
1.   Show that the subset [0, 1)  ∪∪∪∪  [2, 3) of the real line has the same order type as 
the half – open interval [0,2). 
  
2.   Show that the subset [0, 1]  ∪∪∪∪     [2, 3] of the real line does not have the same 
order type as the half – open interval [0, 2]. 
 
3.   Let X be the power set of an infinite set, and let Y be the set of real polynomials 
with the partial ordering discussed previously, so that both X and Y are infinite partially 
ordered sets that are not linearly ordered.  Prove that Y has the self – density property 
but X does not.   
 
4.   Let D(n) denote the partially ordered set of positive integers d which divide n, 
and take the divisibility relation a | b to be the partial ordering.  Prove that D(28) and 
D(45) are order – isomorphic, but the sets D(8) and D(15) are not even though they have 
the same numbers of elements. 
 
5.   Let N be the nonnegative integers with the usual ordering, and take the 

lexicographic ordering on N ×××× N.  Prove that the linearly ordered sets N and N ×××× N 

have different order types.  [  Hint:  For each x ∈∈∈∈ N, the set of all y such that y  <  x is 
finite.] 


