
 

Exercises for  Unit V (The basic number systems of mathematics) 

 
 

V.1 : The natural numbers and the integers 
 

(Halmos, §§ 11 – 13;  Lipschutz, §§ 2.1, 2.7 – 2.9) 
 
 
Problems for study.   
 
Lipschutz : 2.88, 2.92(c) 
 
 
Exercises to work.   
 
1.  Suppose we are given a quadratic equation x  

2 + b x + c  =  0 where b and c are 
integers, and suppose that r is a rational root of this equation.  Prove that r is an integer.  
[  Hint :  Write the quadratic polynomial as (x – r)(x – s) and explain why r + s and rs 
must be integers.  Why does this imply that s is also rational?  Next, using the quadratic 
formula show that (r – s)2  = b  

2 – 4 c and hence the right hand side is a is a perfect 
square, say d  

2.  Next, write r  =  p  / q where p and q are relatively prime, and apply the 
quadratic formula to show that the absolute value of the denominator |q| is at most 2.  
Why do this and the integrality of rs imply that b and d must be both even or both odd?  
Now use the quadratic formula once more to show that the root r must be an integer; 
i.e., we must have |q|  =  1. ] 
 
2.  Explain how one can prove irrationality of the square root of 2 from a special 
case of the preceding result. 
 
3.  Let n be a positive integer.  Explain why the set A of all integers greater than or 
equal to – n is well – ordered.  [  Hint : If B is a nonempty subset of A, consider the set C 

of all integers of the form n + b where b  ∈∈∈∈     B. ]   
 
 
 

I  V.2 : Finite induction and recursion 
 

(Halmos, §§ 11 – 13;  Lipschutz, §§ 1.11, 4.6, 11.1 – 11.7) 
 
 
Problems for study.   
 
 
Lipschutz : 1.36, 1.74 – 1.76 
 



 
 
Exercises to work.   
 
 
1.  Prove by induction that for each nonnegative integer k, the integer k2 + 5k is 
even. 
 

2.  Prove the summation formula 13 + … n  
3  =  (1 + … + n) 2  =  n2 (n + 1) 2 / 4. 

 
3.  The number n! (n factorial), which is the number of permutations of the first n 

positive integers, is defined recursively by 0!  =  1 and n!  =  n  ⋅⋅⋅⋅ (n – 1) !  for all n  >  0.  
Prove that n!  ≤≤≤≤  n  

n for all n  >  0 and strict inequality holds if n  >  1. 
 
4.  The so – called sequence of Fibonacci numbers is given recursively by the 
formulas F0  =  F1  =  1 and Fn  =  F n – 1  + F n – 2  for n  >  1.  Find a function H as in the 
recursive definition theorem which can be used to define the sequence of Fibonacci 
numbers.  [  Hint :  The cases n  =  1 and n  >  1 must be handled separately. ] 
 

Comment:  Fibonacci (c. 1170 – 1250), whose real name was 
Leonardo of Pisa, made many extremely significant contributions 
to mathematics, but it is ironic that he is often best known today 
for mentioning a sequence that had been previously introduced by 
others and which really plays an extremely minor part in his work 
as a whole.  Further information on these historical issues is given 
at the following online site: 

 

http://math.ucr.edu/~res/math153/history07.pdf 
 
 
5.  An amortized loan is paid off in equal periodic payments of P units.  Assume 

that the periodic interest rate over the time period is (100 ⋅⋅⋅⋅ r) % .   If L is the loan amount 
and xn is the balance remaining after the n th payment, give a recursive formula for xn  . 
 

Comment:  Usually one is given L and r, and the objective is to find a 
value of P such that the balance is equal to zero after the M 

th 
payment for some fixed M (which is normally a multiple of 12).  In 
order to do this, one needs to derive a closed formula for xn and solve 
for P in terms of L, r and M. 

 
 

6.  Let (N, σσσσ) be a system satisfying the Peano axioms with zero element 0N.  Prove 
that 0N is the only element that is not in the image of σσσσ....        [  Hint :  Apply the third Peano 
axiom fo the set A  =   {  0N }  ∪∪∪∪        σσσσ(N). ] 
 
 



 
I  V.3 : Finite sets 

 
(Halmos, §§ 11 – 13;  Lipschutz, §§ 1.8, 3.2) 

 
 
Problems for study.   
 
Lipschutz : 1.25, 1.26 
 
 
Exercises to work.   
 
1.  Suppose that we are given two finite sets A and B and a subset C of A ×××× B such 
that the following hold: 
 

(1) Each element of A is the first coordinate for some element of C. 

(2) For each a  ∈∈∈∈  A  , the number of elements in C  ∩∩∩∩  [ { a } ×××× B ] 
is equal to a fixed constant k. 

 

Prove that the number of elements in C is equal to k  ⋅⋅⋅⋅ |A| , where |A| denotes the number 
of elements in A.  [  Hint :  Use induction on the number of elements in A. ] 
 
2.  Use the preceding exercise to compute the number of ordered pairs (x, y) where 
x and y are integers between 1 and 10 such that one is even and the other is odd. 
 
3.  Determine the number of Boolean subalgebras of P(X) if X is the set {1, 2, 3, 4}.  
How many have exactly two atomic subsets? 
 
 

I  V.4 : The real numbers 
 

(Lipschutz, §§ 2.2 – 2.6, 7.7) 
 
 
 
Problems for study.   
 
Lipschutz : 2.14 – 2.15, 2.17, 2.25 – 2.28, 2.61 – 2.62, 2.67, 2.71 – 2.72, 2.73(d), 7.22, 
7.25 – 7.26, 7.62 – 7.63, 7.66 
 
 
Exercises to work.   
 
1.  Let A be a set of real numbers containing exactly two elements.  Explain why A 
is bounded, find the least upper bound and greatest lower bound, and prove that your 
answers are correct. 
 
 



2.  Let A and B be a subsets of the real numbers with least upper bounds u and v.  
Prove that their union has a least upper bound, and express it in terms of u and v.    
 
3.  Let A be the set of negative real numbers.  Prove that 0 is equal to the least 
upper bound of A.  [  Hint : One needs to check that 0 is an upper bound and if x  <  0 
then 0 is not an upper bound; i.e., there is some y ∈∈∈∈     A such that x  <   y. ] 
 
4.  Let A be a set of real numbers with least upper bound x.  Show that there is a 
sequence of elements xn in A whose limit is equal to x; note that the terms of a 
sequence need not be distinct.  [  Hint : Given a positive integer n, why is there an 
element y of A such that y  >  a – (1/n)?  ] 
 
  
 
 

I  V.5 : Familiar properties of the real numbers 
 

(Lipschutz, §§ 2.2, 4.5) 
 
 
 
Problems for study.   
 
Lipschutz : 4.55, 6.17 
 
 
Exercises to work.   
 
1.  Suppose that a and b are real numbers such that a  <  b.  Prove that there are 
infinitely many rational numbers in the open interval (a, b). 
 
2.  For an arbitrary base N, one has “base N decimal – like” expansions analogous 
to those for base 10.  In particular, if k  >  1 is a positive integer then such an expansion  
 

1 / k  =  ( 0 . x  1 x  2 x  3 … ) N 
 

Is given recursively by long division formulas as in the case N  =  10 : 
 

N   =   x  1 k  +  y  1 
 

N  y  1   =   x  2 k  +  y  2 
 

… 
 
 
Suppose that N  =  16 and we write the basic hexadecimal digits in the standard form: 
 

1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F 
 

Find the base 16 decimal – like expansion for 1 / k where k  =  2, … , 10. 
 



3.  Let f be the discontinuous, strictly increasing function from the closed unit interval 
[0, 1] to itself which is defined at the end of the section using decimal expansions, and 
suppose that x is an arbitrary point in the unit interval.  Explain why x is rational if and 
only if f(x) is rational. 
 
4.  In the middle to late 14th century Robert Swineshead (or Suiseth, also known as 
the Calculator) and N. Orseme evaluated the following infinite series (sometimes called 
the Swineshead series): 
 

 
 

Oresme’s technique is equivalent to viewing the latter as a double infinite sum of 
nonnegative terms 

 

ΣΣΣΣ   a i, j 
 

where i, j  ≥≥≥≥     1.  Standard results in the theory of infinite series (first proved rigorously in 
the 19th century) imply that the sum of such a series does not change if one rearranges 
the terms or groups the terms in an arbitrary manner.  In particular, if one puts the terms 
into an infinite matrix where the indices represent the row and column numbers as usual, 
we can find the value of the sum by first adding along the rows and then along the 
columns, and similarly we can find the value by first adding along the columns and then 
along the rows: 
 

 
 

A proof of these formulas appears in the following online document: 
 

http://www.math.umn.edu/~jodeit/course/PwrThms.pdf 
 

If we let a i, j   =    2 
– (i + j)  if i  ≤≤≤≤     j and 0 otherwise, then if we sum first over j holding i 

fixed, and then we sum over i, we obtain the series displayed above.   On the other 
hand, if we sum first over i holding j fixed, and then we sum over j, we obtain a precise 
numerical value for the Swineshead series.  What is it?  [  Hint :  Write out the matrix 
array a i, j  explicitly. ] 
 

 
 


