
Exercises for  Unit VI  (Infinite constructions in set theory) 

 
 

VI.1 : Indexed families and set – theoretic operations 
 

 
(Halmos, §§ 4, 8 – 9;  Lipschutz, §§ 5.3 – 5.4) 

 
 
Problems for study.   
 
Lipschutz : 5.3 – 5.6, 5.29 – 5.32, 9.14 
 
Exercises to work.   
 
1.  Generalize Exercise 12 from Section I  I  I .1 to unions and intersections of 
arbitrary indexed families of sets:   Suppose that we have nonempty indexed families of 
sets { A  j |  j  ∈∈∈∈     J }  and  { C j |  j  ∈∈∈∈     J }  such that A  j   ⊂⊂⊂⊂   C j  for all j,    Prove the 
following relationships: 
 

(∩∩∩∩ j   ∈∈∈∈  J   A j )   ⊂⊂⊂⊂            (∩∩∩∩ j   ∈∈∈∈  J   C j ) 
 

(∪∪∪∪ j   ∈∈∈∈  J   A j )   ⊂⊂⊂⊂            (∪∪∪∪ j   ∈∈∈∈  J   C j ) 
 
2.  Generalize DeMorgan’s laws to unions and intersections of arbitrary indexed 
families of sets as follows:.   Suppose that S is a set and we have a nonempty indexed 
families of subsets of S of the form { A  j |  j  ∈∈∈∈     J }.    Prove the following identities: 
 

S  –   ∪∪∪∪ j   ∈∈∈∈  J   A  j   =     ∩∩∩∩ j   ∈∈∈∈  J   ( S – A  j ) 
 

S  –   ∩∩∩∩ j   ∈∈∈∈  J   A  j   =     ∩∩∩∩ j   ∈∈∈∈  J   ( S – A  j ) 
 
3.   (Halmos, p. 35)  (a)   Given that { A  j |  j  ∈∈∈∈     X } and { B  k |  k  ∈∈∈∈     Y } are 
nonempty  indexed families of sets, prove the following indexed distributive identities: 
 

(∪∪∪∪ j   ∈∈∈∈   J   A  j )   ∩∩∩∩            (∪∪∪∪ k   ∈∈∈∈  K  B  k )    =     ∪∪∪∪ j, k  ( A  j ∩∩∩∩    B k ) 
 

(∩∩∩∩ j   ∈∈∈∈  J   A j )   ∪∪∪∪            (∩∩∩∩ k   ∈∈∈∈  K  B  k )    =     ∩∩∩∩ j, k  ( A  j ∪∪∪∪    B k ) 
  
 (b)   Suppose that  { I  j |  j  ∈∈∈∈     J } is an indexed family of sets, and write  
 

K   =   ∪∪∪∪ { I  j |  j  ∈∈∈∈     J }  . 
 

Suppose we are also given an indexed family of sets { A  k |  k  ∈∈∈∈     K } .  Prove the 
following identities, assuming in the second case that each of the indexed families is 
nonempty: 
 

∪∪∪∪  k ∈∈∈∈    K  A  k    =  ∪∪∪∪ j ∈∈∈∈    J  (  ∪∪∪∪ { A  i  |  i  ∈∈∈∈     I  j }   ) 
 



∩∩∩∩  k ∈∈∈∈    K  A  k    =  ∩∩∩∩ j   ∈∈∈∈  J  (  ∩∩∩∩ { A  i  |  i  ∈∈∈∈     I  j }   ) 
 
4.   (Halmos, p. 37)  (a)   Let { A  j |  j  ∈∈∈∈     J } and { B  k |  k  ∈∈∈∈     K } be indexed families 
of sets.  Prove that 
 

(∪∪∪∪ j   ∈∈∈∈  J   A j )  ××××     (∪∪∪∪ k   ∈∈∈∈  K  B k )    =     ∪∪∪∪ j, k  ( A  j ×××× B  k ) 
 

(another indexed distributive law) and that a similar formula holds for intersections 
provided that all the indexing sets are nonempty. 
  
 (b)   Let  { X j  |  j  ∈∈∈∈     J }  be an indexed family of sets. Prove that 
  

(∩∩∩∩ j   ∈∈∈∈  J   X j )   ⊂⊂⊂⊂         X k    ⊂⊂⊂⊂         (∪∪∪∪ j   ∈∈∈∈  J   X j ) 
 

for all  k  ∈∈∈∈  J.   Furthermore, if M and N are sets such that M   ⊂⊂⊂⊂   X j   ⊂⊂⊂⊂   N for all j, 
prove that  

M     ⊂⊂⊂⊂            (∩∩∩∩ j   ∈∈∈∈  J   X j )        and        (∪∪∪∪ j   ∈∈∈∈  J   X j )   ⊂⊂⊂⊂         N. 
 
 
 
 

V  I .2 : Infinite Cartesian products 
 

(Halmos, § 9;  Lipschutz, §§ 5.4, 9.2) 
 
 
 
Problems for study.   
 
Lipschutz :  5.11 
 
Exercises to work.   
 
1.   (“ A product of products is a product.” )  Let X j be a family of nonempty sets with 

indexing set J, and let J   =   ∪∪∪∪ { J  k |  k  ∈∈∈∈     K } be a partition of J.  Construct a bijective 

map from ΠΠΠΠ j X j to the set 
 

ΠΠΠΠ k ∈∈∈∈    K  (  ΠΠΠΠ { X j  |  j  ∈∈∈∈     J  k }   ) . 
 

[  Hint  :  Use the Universal Mapping Property. ]    
 

2.  Let J be a set, and for each j  ∈∈∈∈     J let f  j : X j  →→→→     Y j be a set – theoretic map.  
Prove that there is a unique map   
                                                  

F    =   ΠΠΠΠ j f  j  :  ΠΠΠΠ j X j    →→→→         ΠΠΠΠ j Y j 
 

defined by the conditions 
                                                     

p  j  
Y

  F    =    f  j  p  j  
X 

                 



where p  j  
X and p  j  

Y denote the j  
th coordinate projections for ΠΠΠΠ j X j and ΠΠΠΠ j Y j 

respectively.  Also prove that this map is the identity map if each f  j is an identity map.  

Finally, if we are also given sets Z j with maps g  j : Y j  →→→→     Z j , and G  =   ΠΠΠΠ j g  j ,  then 

show that G  F   =  ΠΠΠΠ j (g  j  f  j) . 

 

Notation.  The map of products ΠΠΠΠ j f  j constructed in the preceding 
exercise is frequently called the product of the maps f  j .  

 
3.  Let {  X j }  and {  Y j }  be indexed families sets with the same indexing set J, and 

assume that for each j  ∈∈∈∈     J the mapping f  j : X j  →→→→     Y j is a bijection.  Prove that the 

product map ΠΠΠΠ j f  j : ΠΠΠΠ j X j  →→→→     ΠΠΠΠ j Y j is also a bijection.  [  Hint  :  What happens when 
one takes the product of the inverse maps? ] 
 
4.  Suppose in the preceding exercise we only know that each mapping f j is an 
injection or each mapping f  j is a surjection.  Is the corresponding statement true for the 
product map?  In each case either prove the answer is yes or find a counterexample. 
 

Coequalizers.  Here is another fundamental example of a universal 
mapping property.  Given two functions f, g : A  →→→→     B, a coequalizer 
of f and g is defined to be a map  p : B  →→→→     C such that p f  =  p g 
which has the following universality property:  Given an arbitrary map  
q : B  →→→→     D such that q f  =  q g  , then there exists a unique mapping 
h : C  →→→→     D such that q  =  h p.  —  In geometrical studies, such 
constructions arise naturally if one tries to build an object out of two 
simpler pieces by gluing them together in some manner (say along 
their edges), and there are also numerous other mathematical 
situations where examples of this concept arise. 
 

5.  Prove that every pair of functions f, g : A  →→→→     B  has a coequalizer.  [  Hint  :  
Consider the equivalence relation generated by requiring that f(x) be related to g(x) for 
all x in A. ]  
 
6.  In the setting of the previous exercise, suppose that p : B  →→→→     C and r : B  →→→→     E 
are coequalizers of f and g.  Prove that there is a unique bijection H : C  →→→→     E such that 
r  =  H p.  [  Hint  :  Imitate the proof of the corresponding result for products. ]  
 
 
 
 

VI.3 : Transfinite cardinal numbers 
 

(Halmos, §§ 22 – 23;  Lipschutz, §§ 6.1 – 6.3, 6.5) 
  
 

 
Problems for study.   
 
Lipschutz : 6.4, 6.12 



 
Exercises to work.   
 
1.   (Halmos, p. 92)  Prove that the set F(S) of finite subsets of a countable set S is 
countable, and it is (countably) infinite if and only if S is (countably) infinite. 
 
2.  Suppose that E is an equivalence relation on a countably infinite set S, and let 
S/E be the associated family of equivalence classes.  Explain why S/E is countable. 
 
 
 

VI  .4 :      Countable and uncountable sets 
 

 
(Halmos, §§ 23 – 23;  Lipschutz, §§ 6.3 – 6.7) 

 
Problems for study.   
 
Lipschutz :  6.2 – 6.3, 6.14, 6.32 
 
Exercises to work.   
 
1.   (Halmos, p. 95)  Let αααα,,,, ββββ,,,, γγγγ,,,, δδδδ be cardinal numbers such that αααα        ≤≤≤≤        ββββ and 

γγγγ            ≤≤≤≤            δδδδ    .  Prove that αααα        +     γγγγ                ≤≤≤≤                ββββ        +     δδδδ and αααα    ⋅⋅⋅⋅    γγγγ            ≤≤≤≤            ββββ    ⋅⋅⋅⋅    δδδδ    ....    
    
2.  Let αααα        ≠≠≠≠        0 be a cardinal number.  Prove that αααα    ⋅⋅⋅⋅    0  =  0,      αααα1  =  αααα  and 1 

αααα      =      1....    
 
3.  Let ΣΣΣΣ(R) denote the set of all 1 – 1 correspondences from the real numbers to 
itself.  Prove that the cardinal number of ΣΣΣΣ(R) is equal to 2 

|R| .  [  Hint  :  Why is 2 
|R| equal 

to |R| 
|R| ?   Why is ΣΣΣΣ(R) a subset of R 

R and what conclusion does this yield?  Next, for 
each subset of R define a 1 – 1 correspondence from R to itself as follows:  Since we 
have |R| + |R|  =  |R|, it follows that we can partition R into two pairwise disjoint 
subsets A and B that are each in 1 – 1 correspondence with R; let f and g be 1 – 1 

correspondences from R to A and B respectively.  For C  ⊂⊂⊂⊂  R, define a 1 – 1 
correspondence hC such that hC interchanges f(t) and g(t) for each t ∈∈∈∈ C and hC (x)  =  
x otherwise.  Why are hC and hD unequal if C ≠≠≠≠ D?  Look at the set of all y  ∈∈∈∈     A such 
that hC (y)  ≠≠≠≠  y, and use this to conclude that there is a 1 – 1 mapping from P(R) into 
ΣΣΣΣ(R). ] 
 
4.  Prove that the set of countable subsets of the real numbers has the same 
cardinality as the real numbers themselves. 
 
5.  It is known that a continuous function on an interval in the real numbers is 
completely determined by its values at rational points.  What does this imply about the 
cardinal number of continuous functions on an interval? 
 



6.  What is the cardinal number of the set of all partial orderings on N (the 
nonnegative integers)? [  Hint:  There is a 1 – 1 correspondence between binary 
relations and subsets of N × N.  What upper bound does this yield for the set of all 
partial orderings?  For every subset A of N with more than one element, consider the 
partial ordering which agrees with the usual one on A but is modified so that no 
elements in the complement N – A are comparable to any other elements in N.  Why do 
different subsets determine different partial orderings?  Think about the collection of 
isolated elements that are not comparable to anything other than themselves.  How 
many subsets of this type are there in N? —  Note:  A considerably more difficult 
version of this exercise is to show that the cardinality of the set of all partial orderings on 
N is equal to the cardinality of the set of all order types of partial orderings on N. ] 
  
 
 

V  I .6 : Transfinite induction and recursion 
 

(Halmos, §§ 12 – 13, 17 – 20;  Lipschutz, §§ 8.1 – 8.9, 8.12 – 8.13) 
 
 
 
Problems for study.   
 
Lipschutz : 8.21, 8.22 
 
Exercises to work.   
 
1.   (Halmos, p. 68)  A subset C of a partially ordered set A is said to be cofinal if for 

each a  ∈∈∈∈        A there is some c  ∈∈∈∈        C such that c  ≥≥≥≥     a.  Prove that every linearly ordered 
set has a cofinal well – ordered subset.   
 
2.   (Halmos, p. 69)  Prove that a linearly ordered set is well – ordered if and only if 
the set of strict predecessors of each element is well – ordered.   
 
3.    Prove that a well – ordered set is finite if and only it is well – ordered with 
respect to the opposite ordering.  [ Hint  :  An infinite well – ordered set must contain a 
copy of the first infinite ordinal ωωωω....    ]]]] 



Exercises for  Unit VI I  (The Axiom of Choice and related topics) 

 
 

 
General remark.  In all the exercises for this section, the Well – Ordering 
Principle, the Axiom of Choice, or Zorn’s Lemma – or any statement that 
is shown in the course notes to follow from these – may be assumed 
unless explicitly stated otherwise. 

 
 

 
VI  I .1 : Nonconstructive existence statements 

 
(Halmos, §§ 15 – 17;  Lipschutz, §§ 5.9, 7.6, 9.1 – 9.7) 

 
 
 
Problems for study.   
 
Lipschutz : 7.16, 9.12 
 
Exercises to work.   
 
1.  Use the Axiom of Choice to prove the following statement:  If f : A  →→→→  B is a 

function, then there is a function g : B  →→→→     A such that f  =  f  g  f. 
 

2.  Let A and B be sets.  Prove that |A|  ≤≤≤≤  |B| if and only if there is a surjection from 
B to A.  [ Hint  :  One implication direction is in the notes for this section, and the other is 
in the exercises for Section IV.4. ]  
 
DEFINITION(S).  It is possible to define transfinite arithmetic operations on cardinal 
numbers. Specifically, if we are given an indexed family of cardinal numbers αααα j (with 

indexing set J) and sets X j such that | X j |  =  αααα j  , then the transfinite product  ΠΠΠΠ j αααα j  is 

equal to the cardinality of ΠΠΠΠ j X j  .  According to Exercise 3 in Section VI.2, this cardinal 
number does not depend upon the choice of the indexed family of sets X j (assuming 
these sets satisfy | X j |  =  αααα j for all j).   
 

We would like to define a corresponding transfinite sum of the cardinal numbers. 
 

Given an indexed family of sets Y k with indexing set K, the disjoint union, sometimes 
also called the set – theoretic sum, is defined to be the set 
 

| | k Y k   =   { (y, q)  ∈∈∈∈     (∪∪∪∪ k Y k) ×××× K  |  y  ∈∈∈∈     Y q }. 
 
3.  In the setting above, let W be the set defined in the displayed equation, and 
define W q to be the set of all points in W whose second coordinate is equal to q.  Prove 



that the sets W q are disjoint, their union is all of | | k Y k , and for each q we have | W q |  =  
| Y q |.   
 
4.  In the setting above, suppose that we are given a second indexed family of sets 
V k with the same indexing set K, and that for each k in K we have a bijection f  k from Y k 
to V k .  Prove that there is a bijection from | | k Y k to | | k V k . 
 

Consequence and definition.  By the conclusion of the preceding 
exercise, if we are given an indexed family of cardinal numbers αααα j as 

above and we set the transfinite sum  ΣΣΣΣ j αααα j equal to the cardinality of 
the set | | j  X j , then this cardinal number does not depend upon the 
choice of indexed family X j such that | X j |  =  αααα j . 

 
Footnote.  The set – theoretic sum or disjoint union construction has 
numerous formal properties that we shall not discuss in this course.  
Further information may be found in Section V.2 of the online notes 

 

http://math.ucr.edu/~res/math205A/gentopnotes.pdf 
 

and the corresponding exercises in the following online document: 
 

http://math.ucr.edu/~res/math205A/gentopexercises.pdf 
 

 
 

VI  I .2 : Extending partial orderings 
 

(Lipschutz, §§ 7.6) 
 
 
Problems for study.   
 
Lipschutz : 7.16 – 7.18 
 
Exercises to work.   
 
1.   (Taken from Rosen, Exercise 55, p. 530) Find a compatible linear ordering for 
the partial ordering in Exercise 26 on pp. 528 – 529 of Rosen (see Exercise 6 for Section 
I  V.2). 
 
 2.   (Rosen, Exercise 56, p. 530) For the partial ordering on the subset of positive 
integers 
 

{  1, 2, 3, 6, 8, 12, 24, 36 } 
 

determined by divisibility, find a linear ordering containing it. 
 
3.   (Taken from Rosen, Exercise 58, p. 530) Suppose that we are given a set of 
tasks  
 

A, B, C, D, E, F, G, H, K, L, M 
 



that need to be completed to finish a job, and that they must be scheduled as indicated 
below:   
 

A must precede B 
B must precede C 
C must precede D 
D must precede E 
E must precede F 
A must precede G 
G must precede H 
G must precede C 
H must precede K 
H must precede D 
K must precede F 
A must precede L 
L must precede M 
M must precede F 

 

Find a scheduling of the tasks that is compatible with these conditions.      [  Hint : View 
the list as defining a partially ordered set, and draw a Hasse diagram to represent this 
partially ordered set.  Then find a compatible linear ordering for the set. ] 
 
4.  Find a compatible linear ordering for the partially ordered set P(X), where X  =  
{1, 2, 3}. 
 
5.  Find a compatible linear ordering for the partially ordered set with the following 
Hasse diagram:  
 
 

 
 
 
6.  Suppose that L is a linear ordering on a set X which contains more than two 
elements.  Prove that L contains a partial ordering P which is not a linear ordering. 
[  Hint :   Let A be a subset of X with three elements; take P so that no elements in X – A 
are comparable to each other and the restriction P|A is not a linear ordering. ] 

 
 



VI  I .3 : Equivalence proofs 
 

(Halmos, §§ 15 – 17;  Lipschutz, §§ 5.9, 7.6, 9.1 – 9.7) 
 
 
 
Problems for study.   
 
Lipschutz : 7.16, 9.12 
 
Exercises to work.   
 
1.  Prove the following result, which is independently due to J. W. Tukey (1915 – 
2000) and O. Teichmüller (1913 – 1943), and is generally known as Tukey’s Lemma:  
Let F be a family of subsets of a fixed set X, and assume that it has finite character  ; 
i.e., a set A lies in F if and only if every finite subset of A lies in F.  Then F has a 
maximal element.  [  Example :  The linearly independent subsets of a vector space form 
a family of finite character. ] 
 

2.  Let S be a set, and let F ⊂⊂⊂⊂ P(S) be a collection of pairwise disjoint subsets.  
Prove that there is a subset C of S that has exactly one element in common with 
each subset A in F.  

 

 
 

VI  I .4 : Additional consequences 
 

(Halmos, §§ 15 – 17;  Lipschutz, §§ 5.9, 7.6, 9.1 – 9.7) 
 
 
 
Problems for study.   
 
Lipschutz : 7.16, 9.12 
 
Exercises to work.   
 
1.   (Halmos, p. 95)  Let αααα j    and        ββββ j        be indexed families of cardinal numbers with 

indexing set J such that αααα j            <            ββββ j for all j  ∈∈∈∈     J.  Prove that ΣΣΣΣ j αααα j   <   ΠΠΠΠ j ββββ j .  [ Hint  :  For 
each j  ∈∈∈∈     J let X j and Y j be sets such that | X j |  =  αααα j  and | Y j |  =  ββββ j .   It will suffice to 

show that there is no surjection from  | | j  X j to  ΠΠΠΠ j Y j .  Use a modified Cantor diagonal 
process argument to show that any map from the first set to the second is not onto. ] 
 
2.  In the setting of the preceding exercise, what conclusion (if any) can be drawn if 
the inequalities of cardinal numbers are not necessarily strict and all the cardinal 
numbers in sight are transfinite?  Prove your assertion or give examples.  [ Remark  :  
The hypothesis that all cardinal numbers under consideration are infinite is added to 



make the proof simpler; it allows one to assume that |A| + 1  =  |A| for all sets A that 
arise in the discussion. ] 
 
3.   (Halmos, p. 96) Suppose that αααα, ββββ and γγγγ are cardinal numbers and αααα   ≤≤≤≤         ββββ     .         
Prove that ααααγγγγ    ≤≤≤≤          ββββγγγγ.   Also prove that if αααα and ββββ are finite but greater than 1 and γγγγ is 
infinite, then ααααγγγγ   =   ββββγγγγ. 
 
4.   (Halmos, p. 100)  If X is an infinite set, let λλλλ 0 (X) be the least ordinal λλλλ    such that 
there is a bijection from λλλλ    to X; as indicated in the notes, the existence of such an ordinal 
is a consequence of the Well – Ordering Principle.  Explain why λλλλ 0 (X) is a limit ordinal. 
 
5.  If we define cardinal numbers to be equal to specific ordinal numbers as in the 
preceding exercise, which is the first ordinal that is not equal to a cardinal number? 
 
6.   (Halmos, p. 101)  If A is an infinite set, what is the cardinality of the set of all 
countable subsets of A?  [  Hint  : There are two cases depending upon whether or not |A|  
>  |R|. ] 
 
7.  Explain why there is a first ordinal ΛΛΛΛ1 such that |ΛΛΛΛ1|  >  ℵℵℵℵ0 , and prove that every 
countable set of ordinals in ΛΛΛΛ1 has a least upper bound in ΛΛΛΛ1 .  The latter is often called 
the first uncountable ordinal. 
 
8.  If S is a set, then a family of subsets F of S has the finite intersection property 
if for every finite subfamily {  A1, … , An } of F the intersection ∩∩∩∩ j    A j  is nonempty.  Prove 
that if F has the finite intersection property, then F is contained in a maximal family of 
subsets which has the finite intersection property.  


