
SOLUTIONS TO EXERCISES FOR

MATHEMATICS 144 — Part 5

Fall 2006

V. Number systems and set theory

V.1 : The natural numbers and integers

Exercises to work

1. Follow the hint. If we multiply out the right side of the equation x2+bx+c = (x−r)(x−s)
we see that r + s = −b and rs = c, so both these quantities must be integers. It follows that
s = −b − r must also be a rational number. Furthermore, by the Quadratic Formula the roots r
and s are given by

−b ±
√

b2 − 4c

2

and hence we see that r − s =
√

b2 − 4c, so that the right hand side must be a rational number.

In order to proceed we need the following variant of the proof that
√

2 is irrational: If a

positive integer m has a rational square root, then m is a perfect square. PROOF : We might
as well assume that m > 1 because we know that 1 is a perfect square. Express m as a product of
powers of primes

m = pr1

1 · · · prk

k

and write
m1 = ps1

1 · · · psk

k

where sj = 0 if rj is even and sj = 1 if rj is odd. Then m = m1m2 where m2 is a perfect square

(it is the product of the numbers p
rj−sj

j , each of which is a perfect square because the exponents

are all even) and m1 is either 1 or a product of distinct primes. Clearly
√

m is rational if and only
if
√

m1 is rational, so it suffices to show that the latter is true if and only if m1 = 1, which holds
if and only if each rj is even. Assume the contrary, and suppose that pj is a prime dividing m1. If√

m1 is rational then we can write it as a quotient a/b where a and b are relatively prime positive
integers. We then have m1b

2 = a2, and since pj divides m it follows that pj must divide a2, which
in turn means that p2

j must also divide a2; by our choice of a and b it follows that pj does not divide

b. But since p2
j does not divide m1, this means that pj must divide b, contradicting the previous

sentence. It follows that m1 = 1 and m is a perfect square.

By the preceding discussion, we have seen that b2 − 4c = d2 for some positive integer d. —
CLAIM: If b is odd, then d is odd, and if b is even then m is even. — If b is odd, then b2 is also
odd, and hence b2 − 4c = d2 is odd, which means that m must also be odd. On the other hand, if
b is even, then b2 is divisible by 4, which means that d2 = b2 − 4c is also divisible by 4, which in
turn implies that d must be even.

We now have that

r =
−b ± d

2
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where b and d are both even or both odd. In either case we know that −b±d is even, and therefore
it follows that r (and also s) must be an integer.

ALTERNATE APPROACH. One might also try to prove this result by saying that if p/q is a
rational root of the integral polynomial F (t) then q divides the term of F with maximum degree
and p divides the constant term; if the coefficient of the term of maximum degree is 1, then it
follows that q = ±1 and hence the rational root must be an integer. These results on rational roots
of integral polynomials follow from a fundamental result of C. F. Gauss on factoring polynomials
with integer coefficients, but its proof is not covered in lower division mathematics courses, so
we shall include a little background here. We know that r = p/q is a rational root of a rational
polynomial F (t) if and only if (t− r) divides F (t). The result of Gauss states that if we can factor
an integral polynomial A(t) as a product of two rational polynomials B(t) and C(t) of lower degree,
then in fact we can factor A as a product B1C1, where B1 and C1 are integral polynomials that
are rational multiples of B and C. Assuming that we have chosen p and q to have no nontrivial
common factors, this means that (qt − p) must divide F (t) over the integers. But this means that
the coefficient of the highest power of t in F (t) must be divisible by q and the constant terms must
be divisible by p.

References for the factorization result are pages 297–298 of the book by Gallian listed below
and pages 162–164 of the book by Hungerford listed below:

J. A. Gallian, Contemporary Abstract Algebra (Fifth Ed.), Houghton-Mifflen, Boston, 2002.
ISBN: 0-6188-12214-1.

T. W. Hungerford, Algebra (Graduate Texts in Math. Vol. 73). Springer-Verlag, New York,
1974. ISBN: 0-387-90518-9.

2. DISREGARD. [In the proof above we use the fact that the square root of an integer is
rational if and only if the integer is a perfect square, so any attempt to derive the irrationality of√

2 from the preceding exercise is basically circular reasoning.]

3. Follow the hint. Let B be a nonempty set of A, and let C be the set of all integers of
the form n+ b for some b ∈ B. Since B is nonempty, so is C. Also, b ∈ B ⊂ A implies b ≥ −n, and
therefore c = n + b ∈ C implies that c ≥ 0. By the well ordering of the nonnegative integers we
know that the (nonempty) set C has a least element m, and by the construction of C we know that
m − n ∈ B. We claim it is the least element of B. Given b ∈ B we know that b + n ∈ C, and by
minimality of m se know that m ≤ n − b; subtract n from both sides to conclude that m − n ≤ b.

V.2 : Finite induction and recursion

Exercises to work

1. Let Pk be the statement that k2 + 5k is even. Then P0 is true because the value of the
k2 + 5k at k = 0 is zero, which is even. Suppose now that Pn is true; we then need to show that
(n + 1)2 + 5(n + 1) is even. If we expand the latter we obtain

n2 + 2n + 1 + 5n + 5 = (n2 + 5n) + (2n + 6)

and by the induction hypothesis we know that n2 + 5n is even. However, we also know that 2n + 6
is even, and therefore the displayed quantity is expressed as a sum of two even integers and hence
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must be even itself. Thus we have shown that for all n we have Pn =⇒ Pn+1, and this means
that the statement in the exercise is true for all nonnegative integers k.

2. Let Pn be the statement of the exercise for the nonnegative integer n. Strictly speaking
there are two parts to this, one of which is to prove the formula for 1 + · · · + n and the other of
which is to do the same for 13 + · · · +n3. Both statements are trivially true if n = 0, and we need
to show that if Pn is true then Pn+1 is also true.

We begin with the simpler formula, where we have

1 + · · · + n + (n + 1) =
n2 + n

2
+ (n + 1) =

n2 + 3n + 2

2
=

(n + 1)(n + 2)

2

which shows that the first part of Pn+1 is true. In the other case we have

13 + · · · + n3 + (n + 1)3 =

(

n2 + n

2

)2

+ (n + 1)3 =

(n4 + 2n3 + n2) + (4n3 + 12n2 + 12n + 4)

4
=

n4 + 6n3 + 13n2 + 12n + 4)

4
=

(n2 + 2n + 1)(n2 + 4n + 4)

4
=

(n + 1)2(n + 2)2

4
=

(

(n + 1)(n + 2)

2

)2

thus completing the derivation of Pn+1 from Pn.

3. If n = 1 the formula is true because 1! = 1 = 11. Suppose now that we have n! ≤ nn for
some n ≥ 1; we want to prove that (n + 1)! < (n + 1)(n+1). — Since (n + 1)! = n!(n + 1), we must
have

(n + 1)! = n!(n + 1) ≤ nn(n + 1) < (n + 1)n(n + 1) = (n + 1)(n+1)

as required. To be more precise, let Pn be the compound statement in the exercise. Then the
preceding shows that P1 implies P2, and our argument shows that if Pn is true for n ≥ 2 then
n! ≤ nn implies (n + 1)! < (n + 1)(n+1), which is the conclusion of Pn+1.

4. As noted in the hint, the cases n = 1 and n ≥ 2 must be handled separately. For a
sequence f of length one, we simply take H(f) = 1, while for sequences of length n ≥ 1 we take
H(f) = fn−1 + fn−2.

5. The crucial point is to understand how much of the payment of P units goes towards
principal and how much towards interest. The interest owed at time n, which is computed using the
balance after the previous payment at time n− 1, is equal to r xn−1, so this means that P − r xn−1

goes to the principal and therefore we have

xn = xn−1 − (P − r xn−1) = (1 + r)xn−1 − P .

Although the problem does not ask for it, we shall also derive the formula for finding the value
of P such that the loan will be paid off after M equal payments of P units. One can use the
recursive relation to find an explicit formula for xn in terms of L, r and P :

xn =
P

r
+ (1 + r)

[

S − L

r

]
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The condition that xM should equal zero leads to the following expression for P in terms of L, r
and M :

P =
rL(1 + r)M

(1 + r)M+1 − 1

If one intends to use this formula to work out a specific problem in computing payments, it is
important to remember that the payments are usually monthly, so M denotes the number of
months and r denotes the monthly interest rate (converted from a percentage to a decimal fraction,
which means dividing the monthly percentage rate by 100).

6. Following the hint, let A = {0} ∪ σ[N]. We need to show that 0 ∈ A and if a ∈ A then
σ(a) ∈ A. Then the third Peano axiom will imply that A = N, and since A has only one element
that is not the successor of anything else, the same must be true for N.

The condition 0 ∈ A iis true by definition. If a ∈ A, then either a = 0 or a = σ(b) for some
b ∈ N. In either case σ(a) ∈ σ[N] ⊂ A, so this proves the second condition in the third Peano
axiom.

V.3 : Finite sets

Exercises to work

1. We prove this by induction on |A|. If |A| = 1, then A = {a} for some a and the
result is true by assumption (2). Suppose the result is true for finite sets with n elements and that
|A| = n + 1. Let a ∈ A and set A0 = A−{a}; let C0 = C ∩A0 ×B, and let C ′ = C ∩ {a}×B. We
then have C = C0 ∪ C ′ and C0 ∩ C ′ = ∅. Furthermore, assumption (2) implies that |C ′| = k and
|C0| = |A0| · k. Therefore we have

|C| = |C0| + |C1| = |A0| · k + k =

(|A0| + 1) · k = |A| · k

which completes the derivation of the inductive step.

IMPORTANT GENERALIZATION.

One can view an ordered pair as a sequence of length 2; with this interpretation, the conclusion
of the exercise extends to sequences of arbitrary finite length as follows:

Informal version. Suppose that we are given a sequence of k choices chi such that at

each step the number ni of alternatives does not depend upon the previous choices. Then

the total number of possible choice sequences is n1 · ... · nk.

Formal version. Let S be a set of sequences of length k whose terms lie in some finite

set A, and for each i such that 1 ≤ i ≤ n let Si be the set of all restrictions of sequences

in S to {1, · · · , i}; set S0 = ∅. Suppose that for each i such that 0 ≤ i < n, and each

y ∈ Si the number N(y) of sequences x ∈ Si+1 restricting to y is independent of y, and

denote this number by ni+1. Then the number |S| of sequences in S is equal to the product

n1 · · · nk.
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This principle plays an important role in the proofs of many formulas (for example, showing
that the number of permutations of {1, · · · , n} is n! and the fact that the number of subsets of
{1, · · · , n} with exactly r elements is equal to

(

n

r

)

=
n!

(n − r)! r!
.

2. We can fit this example into the setting of the previous exercise with A = B =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. In this case the number k = 5, which is the number of integers that are
odd if a is even and the number that are odd if k is odd. Therefore the total number of pairs in
this case is equal to 10 × 5 = 50.

3. By the theorem, there are as many Boolean subalgebras as there are partitions of
{1, 2, 3, 4} into disjoint subsets. The standard way to count partitions is to do so in decreasing
order of the sizes of the subsets. We then have the following:

• There is one partition containing one subset of 4 elements.

• There are three partitions containing one subset of 3 elements and one of 1 element.

• There are three partitions containing two subsets of 2 elements.

• There are six partitions containing one subset of 2 elements and two of 1 element.

• There are four partitions containing four subsets of 1 element.

Thus the total number of partitions is 1 + 4 + 3 + 6 + 4 = 18. Furthermore, the number with two
atomic elements is the number of partitions into two subsets, which are all those of the second and
third types. Thus there are exactly seven subalgebras that have precisely two atomic elements.

V.4 : The real numbers

Exercises to work

1. Suppose that x0 and x1 are the two elements of the set S and they are indexed so that
x0 < x1. We claim that x1 is the least upper bound of S and x0 is the greatest lower bound of S.
The fiact that they are upper bounds follows because y ∈ S implies x0 ≤ y ≤ x1. Suppose that U
is another upper bound for S. Then x1 ∈ S implies that x1 ≤ U , which is precisely the condition
for x1 to be the least upper bound. Similarly, if L is a lower bound for S, then L ≤ x0, which is
precisely the condition for x0 to be the greatest lower bound for S.

2. The least upper bound of A ∪ B is the larger of u and v. To prove this, let w be the
larger of u and v. Then x ∈ A ∪ B implies x ∈ A or x ∈ B, which in turn implies x ≤ u or x ≤ v.
In either case we have x ≤ w, so w is an upper bound for A ∪ B.

To see it is the least upper bound for A ∪ B, suppose we have z < x; we need to show that
z cannot be an upper bound for the union. Suppose that w = u. Then by the definition of least
upper bound we know that there is some a ∈ A such that a > z. Since z is not an upper bound
for A it cannot be an upper bound for the larger set A ∪ B. Likewise, if z = v then there is some
b ∈ B such that b > z. Since z is not an upper bound for B it cannot be an upper bound for the
larger set A ∪ B. Therefore in either case we know that z cannot be an upper bound for A ∪ B,
and hence w must be a least upper bound for A ∪ B.
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3. First of all, 0 is greater than every negative number, so 0 is an upper bound for A.
Suppose now that a < 0. Then a cannot be an upper bound for A because we have a < 1

2a < 0;
thus if U is an upper bound for A then U ≥ 0, and hence 0 must be the least upper bound for A.

4. Since x is the least upper bound for A, we know that for each positive integer n the
number a − 1

n
is not an upper bound, and hence there is some an ∈ A such that a − 1

n
< an < a.

We claim limn→∞ an = a. Let ε > 0, and choose N such that n ≥ N implies 1
n

< ε. Then n ≥ N
implies

a > an > a − 1

n
≥ a − 1

N
> a − ε

so that |an − a| < ε as required.

V.5 : Familiar properties of the real numbers

Exercises to work

1. There are many ways of doing this problem. For example, we can start by saying that
there is a rational number r0 such that a < r0 < b and another rational number r1 such that
r0 < r1 < b. An entire sequence of numbers rn for n > 1 such that rn < · · · < r2 < r1 may be
defined by setting

rn = r0 +
r1 − r0

n

or alternatively one can take a sequence such that a < r0 < r1 < r2 < · · · < rn < · · · < b.

2. Each case will be handled separately. It is probably worthwhile to begin by observing
that we can write 1 in “base 16 decimal-like” notation as 0.FFFFFFF...HEX , because we have the
following geometric series identity which works for all n > 1:

∞
∑

k=1

n − 1

n
·
(

1

n

)k

=
n − 1

n
· 1

1 − (1/n)
= 1

In the discussion below we shall always denote hexadecimal expansions by appending the subscript
“HEX” as above; for example, 14HEX is equal to 20 (in base 10).

The easy cases. If k divides 16 evenly, then just as for decimals the expansion is given by 16/k
in the first position and zeros afterwards, or equivalently by (16/k)− 1 in the first position and F’s
afterwards. Thus we have that 1

2 = 0.800000...HEX , 1
4 = 0.400000...HEX , and 1

8 = 0.200000...HEX .

The case 1
3
. The algorithm tells us exactly how to proceed. Start with 16 = x1 · 3 + y1,

16y1 = x2 ·3+y2, and so forth, obtaining 16 = 5 ·3+1, 16 = 16 ·1 = 5 ·3+1, and similarly for every
other value. The terms in the expansion are the xj ’s, so this means that 1

3 = 0.5555555555...HEX .

The case 1
5 . In this case the algorithm yields 16 = 3 ·5+1, 16 = 16 ·1 = 3 ·5+1, and similarly

for every other value, so this means that 1
5 = 0.3333333333...HEX .

The case 1
6
. In this case the algorithm yields 16 = 2 · 6 + 4, 16 · 4 = 64 = 10 · 6 + 1, and

similarly for every other value, so this means that 1
6

= 0.2AAAAAAAAA...HEX.

The case 1
7 . In this case the algorithm yields 16 = 2 · 7 + 2, 32 = 16 · 2 = 4 · 7 + 4,

64 = 16 · 4 = 9 · 7 + 1, 16 = 2 · 7 + 2, and one has a periodic pattern of length 3 for the remaining
values, so this means that 1

7 = 0.249249249249...HEX .
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The case 1
9 . In this case the algorithm yields 16 = 1 · 9 + 7, 112 = 16 · 7 = 12 · 9 + 4,

64 = 16 · 4 = 7 · 9 + 1, 16 = 1 · 9 + 7, and one has a periodic pattern of length 3 for the remaining
values, so this means that 1

9 = 0.1C71C71C71C7...HEX .

The case 1
10 . In this case the algorithm yields 16 = 1 · 10 + 6, 16 · 6 = 96 = 6 · 10 + 6, and

similarly for every other value, so this means that 1
10 = 0.1999999999...HEX .

This completes the list of examples in the exercise, but of course one could continue to find
hexadecimal expansions for all of the fractions 1

k
.

3. The point of this exercise is that x has an eventually periodic decimal expansion if and
only if f(x) does.

Suppose that x is rational and that it has a decimal expansion that is eventually periodic with
period p; in other words, there is some N such that for each n ≥ N the decimal digits xn for x
satisfy xn = xn+p. What can one say about the decimal digits yn for y = f(x) if n ≥ 2N? If n is
even then yn = 0 and thus we trivially have yn+2p = 0 = yn, while if n is an odd number of the
form 2m − 1 then 2m − 1 ≥ 2N implies m ≥ N , so that y2m−1 = xm = xm+p = y2p+2m−1. Thus
the decimal expansion of y = f(x) is eventually periodic, so that f(x) is rational if x is rational.

Suppose now that f(x) is rational. Since we know that f(0) = 0, we need only consider the
case where f(x) and x are both nonzero. — The conclusion is also trivial if f(x) is a finite decimal
fraction (in which case the same is true for x), so let us also assume that there are infinitely
many decimal digits that are nonzero for x. Since only the odd entries are nonzero, it follows
that the period of the tail end of the expansion must be even (this uses the fact that there are
infinitely many nonzero terms so that there is a nonzero entry in the repeating part of the decimal
exapansion). Thus if we let y = f(x) as before, then we have some 2N and p such that m ≥ N
implies y2p+2m−1 = y2m−1. Thus for all m sufficiently large we also have xm+p = xm as well.

4. Follow the hints as usual. We want to apply the summation formulas

∑

i,j≥1

ai,j =
∑

i≥1

∑

j≥1

ai,j =
∑

j≥1

∑

i≥1

ai,j

where ai,j = 21−(i+j) if i ≤ j and 0 otherwise. If we sum first over j holding i fixed and then sum
over i, we find that the sum of this series is equal to the Swineshead series

∑

k≥1

k

2k

as indicated in the problem. What happens if we sum over i holding j fixed and then sum over j?
We obtain

∑

j≥1

∑

i≥1

21−(i+j) =
∑

j≥1

22−j = 2

which is the value that Swineshead and Oresme computed in the 14th century.
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