
SOLUTIONS TO EXERCISES FOR

MATHEMATICS 144 — Part 6

Fall 2006

VI. Infinite constructions in set theory

VI.1 : Indexed families and set - theoretic operations

Exercises to work

1. We first verify the statement about unions. Suppose that x ∈ ∪j∈J Aj , and choose
j(0) ∈ J such that x ∈ Aj(0). Then the inclusion hypothesis implies that x ∈ Cj(0), which in turn
implies that x ∈ ∪j∈J Cj . Therefore ∪j∈J Aj is a subset of ∪j∈J Cj .

We now verify the statement about intersections. Suppose that x ∈ ∩j∈J Aj , so that x ∈ Aj

for every j ∈ J . The inclusion hypothesis now implies that x ∈ Cj for every j ∈ J , and therefore
we must have x ∈ ∩j∈J Cj . Therefore ∩j∈J Aj is a subset of ∩j∈J Cj .

2. We prove the assertions in order. Suppose that x ∈ S − ∪j∈J Aj . Then x 6∈ ∪j∈J Aj ,
or equivalently there is no j such that x ∈ Aj . Therefore we have x 6∈ Aj for all j, and since x ∈ S
this means x ∈ S −Aj for all j. The latter in turn implies that x ∈ ∩j∈J S −Aj , and therefore we
have S − ∪j∈J Aj ⊂ ∩j∈J S −Aj .

Conversely, if x ∈ ∩j∈J S −Aj , then x 6∈ Aj for each j, so that there is no j satisfying x ∈ Aj

and hence x 6∈ ∪j∈J Aj . Since x ∈ S, it follows that x ∈ S −∪j∈J Aj , and this plus the conclusion
of the previous paragraph establishes one of the De Morgan laws.

We now turn to the other De Morgan law. Suppose that x ∈ S − ∩j∈J Aj . Then there
is some j(0) ∈ J such that x 6∈ Aj(0), and accordingly we have x ∈ S − Aj(0). Now the latter
set is a subset of the union ∪j∈J S − Aj by the definition of this union, and therefore we have
S − (∩j∈J Aj) ⊂ ∪j∈J S −Aj .

Conversely, if x ∈ ∪j∈J S−Aj , then there is some j(0) such that x ∈ S−Aj(0), so that x 6∈ Aj(0).
The last statement implies that x 6∈ ∩j∈J Aj , and since x ∈ S it follows that x ∈ S − (∩j∈J Aj).
As in the discussion of the first De Morgan law, this plus the conclusion of the previous paragraph
establishes the second De Morgan law.

3. (a) Suppose first that x ∈ (∪i Ai) ∩ (∪j Bj). Then one can find indices i(0) and j(0) such
that x ∈ Ai(0) and x ∈ Bj(0), and hence x ∈ Ai(0)∩Bj(0), so that x ∈ ∩i,j (Ai ∪ Bj). — Conversely,
if x lies in the latter set, then one can find indices i(0) and j(0) such that x ∈ Ai(0) ∩Bj(0). Since
Ai(0) is a subset of ∪i Ai and Bj(0) is a subset of ∪j Bj , it follows that the intersection Ai(0) ∩Bj(0)

is a subset of (∪i Ai) ∩ (∪j Bj). This proves the first identity in (a).

We now turn to the second identity. Suppose that x ∈ (∩i Ai) ∪ (∩j Bj). Then either
x ∈ ∩i Ai or x ∈ ∩j Bj . In the first case we have x ∈ Ai for all i and in the second we have x ∈ Bj

for all j. Therefore in both cases we have x ∈ Ai ∪Bj for all i and j., so that x ∈ ∩i,j (Ai ∪ Bj).
— Conversely, if x lies in the latter set, then for each ordered pair (i, j) we either have x ∈ Ai or
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x ∈ Bj . It suffices to show that if x 6∈ ∩i Ai, then we must have x ∈ ∩j Bj . However, if x does
not belong to the first intersection, then for some i(0) we have x 6∈ Ai(0), and thus for all ordered
pairs ( i(0), j ) we must have x ∈ Bj . The last statement implies that x ∈ ∩j Bj , which is what we
needed to verify.

(b) Suppose that x ∈ Ak for some k, and choose j such that k ∈ Ij . We then have x ∈
∪ {Ai | i ∈ Ij}, which in turn implies

x ∈
⋃

j∈J





⋃

i∈Ij

Ai



 .

Conversely, if x belongs to the latter set, then for some j we have x ∈ ∪ {Ai | i ∈ Ij}, which in
turn means that x ∈ Ai for some i, so that x ∈ ∪k Ak. This proves the first identity in (b).

We now turn to the second identity. Suppose that x ∈ Ak for all k. Then for each j we have
x ∈ ∩ {Ai | i ∈ Ij}, and hence we also have

x ∈
⋂

j∈J





⋂

i∈Ij

Ai



 .

Conversely, if x belongs to the latter set, then for all j we have x ∈ ∩ {Ai | i ∈ Ij}, which in turn
means that x ∈ Ai for all i, so that x ∈ ∩k Ak. This proves the second identity in (b).

4. (a) Suppose first that (x, y) ∈ (∪i Ai) × (∪j Bj). Then one can find some indices i(0)
and j(0) such that x ∈ Ai(0) and y ∈ Bj(0). Therefore we have (x, y) ∈ Ai(0)×Bj(0). Since the latter
is contained in ∪i,j (Ai ×Bj) it follows that (x, y) ∈ ∪i,j (Ai ×Bj). — Conversely, it (x, y) belongs
to the latter set, then one can find some indices i(0) and j(0) such that (x, y) ∈ Ai(0) ×Bj(0), and
therefore it follows that (x, y) belongs to (∩i Ai) × (∩j Bj). This proves the first identity in (a).

We now turn to the second identity. Suppose that (x, y) ∈ (∩i Ai) × (∩j Bj). Then for
all i and j we have x ∈ Ai and y ∈ Bj , so that x ∈ Ai × Bj for all i and j, and hence we have
(x, y) ∈ ∩i,j (Ai ×Bj). — Conversely, if (x, y) belongs to the latter set, then for each i and j we
know that x ∈ Ai and y ∈ Bj , so that (x, y) ∈ (∩i Ai) × (∩j Bj). This proves the second identity
in (a).

(b) First of all, we need to show that for each j we have ∩i Xi ⊂ Xj ⊂ ∪i Xi. If y lies in the
intersection on the left hand side, then it lies in each Xi and in particular it lies in Xj , so the first
inclusion is true. Likewise, if y ∈ Xj then trivially we have f ∈ Xi for some i and hence y ∈ ∪i Xi.

To complete the second part of the problem, we need to show that if the sets U and V satisfy

U ⊂ Xj ⊂ V

for every j, then we have U ⊂ ∩i Xi and ∪i Xi ⊂ V . — If y ∈ U , then by hypothesis we have
y ∈ Xi for all i and since the intersection is defined by this condition we have U ⊂ ∩i Xi. Also, if
y ∈ ∪i Xi, then for some j we have y ∈ Xj . By assumption Xj ⊂ V , and therefore we also have
y ∈ V . But this means that every element of ∪i Xi is also in V , so that Xj ⊂ V as required.
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VI.2 : Infinite Cartesian products

Exercises to work

1. The main idea is to apply the Universal Mapping Property:

Let {Aα | α ∈ Λ} be a family of nonempty sets, and suppose that we are given data consisting

of a set P and functions hα : P → Aα such that for EVERY collection of data (S, {fα : S → Aα})
there is a unique function f : S → P such that hα

of = fα for all α. Then there is a unique 1 − 1
correspondence Φ :

∏

α Aα → P such that hα
oΦ is projection from

∏

αXα onto Aα for all α.

Application to the exercise. For each k let Pk denote the product of objects whose index
belongs to Jk and denote its coordinate projections by pi. The conclusions amount to saying that
there is a canonical morphism from

∏

k Pk to
∏

iXi that has an inverse morphism. Suppose that
we are given morphisms fi from the same set S to the various sets Xi. If we gather together all
the morphisms for indices i lying in a fixed subset Jk, then we obtain a unique map gk : S → Pk

such that pi
ogk = fi for all i ∈ Jk.

Let qk :
∏

` P` → Pk be the coordinate projection. Taking the maps gk that have been
constructed, one obtains a unique map F : S → ∏

k Pk such that qk
oF = gk for all k. By

construction we have that pi
oqk oF = fi for all i. If there is a unique map with this property, then

∏

k Pk will be isomorphic to
∏

iXi by the Universal Mapping Property. But suppose that θ is any
map with this property. Once again fix k. Then pi

oqk oF = pi
oqk oθ = fi for all i ∈ Jk implies that

qk oF = qk oθ, and since the latter holds for all k it follows that F = θ as required.

2. Once again we use the Universal Mapping Property. If we are given a sequence of set-
theoretic functions fi : Xi → Yi, then we obtain a corresponding set of functions f ∗

i :
∏

j Xj → Yi

defined by the identities

f∗
i = fi

opX
i

where px
i :

∏

j Xj → Xi is projection. Thus the Universal Mapping Property yields a unique
mapping

F =
∏

i fi :
∏

iXi → ∏

iYi

such that pY
i

oF = f∗
i = fi

opX
i for each i, where πX

i and πY
i denote the ith coordinate projections

for
∏

iXi and
∏

i Yi respectively.

The assertion that F is an identity mapping if each fi is an identity mapping follows because
from the uniqueness part of the Universal Mapping Property, for the identity mapping on the
product satisfies the displayed equation if each of the mappings fi is an identity mapping.

Finally, the assertion about composites can be verified as follows: Let H =
∏

j gj
ofj . Then

for each i we have

pZ
i

oH = gi
ofi

oπX
i = gi

opY
i

oF = pZ
i

oG oF

and therefore H = G oF by the Universal Mapping Property.

3. Follow the hint. Since each fj is a bijection we have inverse mappings gj = f−1
j . By

the preceding exercise we then have

∏

j

fj
o

∏

j

gj =
∏

j

(fj
ogj) =

∏

j

id(Yj) = id
(

∏

jYj

)
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and we also have

∏

j

gj
o

∏

j

fj =
∏

j

(gj
ofj) =

∏

j

id(Xj) = id
(

∏

jXj

)

so that the product of the inverses
∏

j gj is an inverse to
∏

j fj .

4. Both statements are TRUE. — To prove the first one, let u,v ∈ ∏

j Xj with
coordinates uj and vj respectively, and suppose that

∏

j fj(u) =
∏

j fj(v). This means that the

jth coordinates are equal for every j. But the jth coordinates of the given elements are fj(uj) and
fj(vj) respectively. Since each fj is 1–1 it follows that uj = vj for all j, which in turn means that
u = v. Therefore

∏

j fj is 1–1 if each fj is 1–1.

Suppose now that each map fj is onto, and let y ∈ ∏

j Yj with coordinates yj . Since each fj

is onto for each j there is an element xj ∈ Xj such that fj(xj) = yj . If we take x ∈ ∏

j Xj such

that the jth coordinate is xj for each j, then it follows that
∏

j fj(x) = y and hence
∏

j fj is onto.

5. We shall use the following result from Unit IV: Let X and Y be sets, let ϕ : X → Y be
a function, let R be a binary relation on X, and let E be the equivalence relation generated by R.
Suppose that for all u, v ∈ X we know that uR v implies ϕ(u) = ϕ(v). Then for all x, y ∈ X such
that xE y we have ϕ(x) = ϕ(y).

To solve the problem, let R be the binary relation on B such that uBv if and only if there is
some x ∈ A such that u = f(x) and v = g(x), let E be the equivalence relation generated by R,
let C be the corresponding set of equivalence classes, and let p : B → C be the equivalence class
projection. By construction we have p of(x) = p og(x) for all x ∈ A.

Suppose now that we have a function q : B → D such that q of = q og. We need to define a
function h : C → D such that h sends the equivalence class [b] of b to q(b). The main problem is to
verify that h is well defined; i.e., it does not depend upon the choice of an element of b representing
a given equivalence class. If we can show that h is well defined, the it will follow that h op = q;
furthermore if we also have k op = q, then for each c ∈ C we may write c = p(b) for some b and
hence

k(c) = k op(b) = q(b) = h op(b) = h(x)

so that h = k. — By the proposition quoted in the first paragraph, it suffices to show that if uR v
then q(u) = q(v), and by definition of R this reduces to showing that for each x ∈ A we have
q of(x) = q og(x); this equation holds by our hypothesis on q, and therefore by the proposition we
know that h is well defined. As noted before, this completes the proof.

6. First of all, we observe a consequence of the uniqueness statement. Namely, the only
maps ϕ : C → C and ψ : E → E such that p oϕ = p and q oψ = q are the identities on C and E
respectively.

By the universal mapping properties for coequalizers, there are unique maps H : C → E such
that r = H op and K : E → C such that p = K or. It follows that r = K oH or and p = H oK op,
and therefore by the first sentence we conclude that H oK and K oH are the identity mappings on
C and E respectively. As usual, this implies that both H and K are bijections.
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VI.3 : Transfinite cardinal numbers

Exercises to work

1. Let S be the set in question, and let S[n] denote the set of subsets with n elements.
It will suffice to show that each A[n] is countable, because a countable union of countable sets is
countable. In fact, since there is only one subset with no elements, we might as well assume that
n ≥ 1.

Since S is countable it has a well-ordering. Define a map F from S[n] to ΠnS — the product
of n copies of S with itself — such that the coordinates of F (B) are the elements of B in order;
i.e., the first coordinate is the least element b0, the second is the least element of those remaining
after b0 is removed, and so on. This defines a 1–1 mapping into ΠnS, which is a countable set.
Hence each set S[n] is countable as required.

To see the final assertion, note that if S is finite then the set P (S) of all subsets is finite, while
if S is infinite, then the set F1(S) of subsets with exactly one element is in 1–1 coorespondence
with S, and hence both F1(S) and P (S) ⊃ F1(S) are infinite.

2. The equivalence class projection from S to S/E is an onto mapping, and since S is
countable the results of Section 3 imply that S/E must also be countable.

VI.4 : Countable and uncountable sets

Exercises to work

1. Let A, B, C, D be sets such that |A| = α, |B| = β, |C| = γ, and |D| = δ. The cardinal
number inequalities imply the existence of 1–1 mappings f : A → B and g : C → D. These maps
in turn define mappings f q g : Aq C → B qD and f × g : A× C → B ×D as follows:

[f q g] (a, 1) = ( f(a), 1 )

[f q g] (c, 2) = ( g(c), 2 )

[f × g] (c, b) = ( f(a), g(c) )

Since α + γ = |A q C| and α · γ = |A × C| and similarly if β, δ,B,D replace α, γ,A,C the
conclusion of the problem will follow if we can verify that f q g and f × g are both 1–1.

To see that f q g is 1–1, suppose that we have two classes (u, i) and (v, j) which have the same
image under this map. By definition of f q g we know that the second coordinates satisfy i = j so
that either this second coordinate is 1 and u, v ∈ A or else this second coordinate is 2 and u, v ∈ B.
In each case the injectivity of f and g imply that the images of (u, i) and (v, i) are the same if and
only if u = v. Therefore f q g is injective if f and g are.

To see that f × g is 1–1, suppose that we have f × b(a, c) = f × g(a′, c′). By definition of f × g
we conclude that

(

f(a), g(c)
)

=
(

f(a′), g(c′)
)
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and since ordered pairs are determined by their coordinates the latter implies that f(a) = f(a ′) and
g(c) = g(c′). Since f and g are injective this implies that a = a′ and c = c′ so that (a, c) = (a′, c′)
and hence f × g is injective if f and g are.

2. Choose A so that |A| = α. Then A × ∅ = ∅ implies that α · 0 = 0. Also α1 is the
cardinality of the set of all functions from {1} to A, which is in 1–1 correspondence with A under
the mapping which sends f : {1} → A to the value f(1) ∈ A. Therefore we have α1 = |A| = α.
Finally, 1α is the cardinality of the set of all functions from A to {1}, and since there is a unique
function of this type (the function whose value at every element of A is equal to 1), it follows that
1α = 1.

3. We shall split the proof into several steps.

(i) Suppose that α = ℵ0 or 2ℵ0 . Prove that αα = 2α. Suppose that α = ℵ0 and β = 2α. Then

βα = 2α.

(ii) Let X be a set, and let Σ(X) denote the set of bijections from X to itself. Suppose that

ϕ : X → Y is a bijection of sets. Prove that there is a bijection ϕ∗ : Σ(X) → Σ(Y ) such that

ϕ∗(h) = ϕ oh oϕ−1 for all h ∈ Σ(X).

(iii) Suppose that |X| = α, where α = ℵ0 or 2ℵ0 . Prove that |Σ(X)| = αα = 2α.

Proof of (i). We shall prove the statements in the individual sentences separately. For the
first sentence, we have 2α ≤ αα; since α · α = α for these cardinal numbers we also have

αα ≤ (2α)α = 2α·α = 2α

and hence the Schröder-Bernstein Theorem implies that the left and right hand sides are equal.

IMPORTANT GENERALIZATION. This argument works for an infinite cardinal number α if
we know that α · α = α. By the results of Section VII.4 this equation holds for all infinite cardinal
numbers, and therefore it follows that the conclusion of Part (i) is true for all infinite

cardinal numbers.

Proof of (ii). It follows immediately that the construction Φ∗(f) = ϕ of oϕ−1 defines a
mapping of function sets from F(X,X) to F(Y, Y ). We need to show that it sends the subset Σ(X)
to Σ(Y ). In other words, if f is a bijection we need to check that ϕ of oϕ−1 is also a bijection.
But this follows immediately because the latter is a composite of bijections and a composite of
bijections is also a bijection.

Let ψ : Y → S be the inverse of ϕ. Then by the same reasoning as above we have a map
ψ∗ : Σ(Y ) → Σ(X), and it will suffice to show that the composites ψ∗

oϕ∗ and ϕ∗
oψ∗ are both

identity mappings. Consider the following chains of equations:

ψ∗
oϕ∗(f) = ψ oϕ of oϕ−1 oψ−1 = ψ oϕ of oψ oϕ = idX

of o idX = f = Identity(f)

ϕ∗
oψ∗(g) = ϕ oψ og oψ−1 oϕ−1 = ϕ oψ og oϕ oψ = idY

og o idY = g = Identity(g)

It follows that ϕ∗ is bijective and ψ∗ is its inverse.

Proof of (iii). Assume that X is either N or R. Since Σ(X) ⊂ F(X,X) by definition, it
follows that if |X| = α then |Σ(X)| ≤ αα. By the Schröder-Bernstein Theorem it will suffice to
prove the reverse inequality.

Define a map σ : F(X,X) → Σ(X × X) so that for each u : X → X we have the following
description of σu ∈ Σ(X ×X):
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[1] σu(y, 0) = ( y, u(y) )

[2] σu( y, u(y) ) = (y, 0)

[3] σu(y, z) = (y, z) otherwise.

In words, σu interchanges elements of the form (y, 0) with elements of the form ( y. u(y) ) and
leaves everything else fixed.— Note that if X = R the mapping σu is almost never going to be
continuous. By construction each σu defines a mapping from X to itself, and in fact the composites
σu

oσu are all equal to the identity map on X ×X. This shows that each σu is a bijection, and in
fact each such map is equal to its own inverse.

We now need to show that σ is an injection. However, if σu = σv then for every y ∈ X we
have σu(y, 0) = σv(y, 0), which implies that u(y) = v(y); it follows that if σu = σv, then u = v as
required.

The preceding argument shows that αα ≤ |Σ(X × X)|. Since α · α = α for the sets X we
are considering, we may now apply (i) to conclude that |Σ(X × X)| = |Σ(X)|, and therefore we
also have αα ≤ |Σ(X)|. As noted previously in this exercise, we may now conclude that equality
actually holds in the latter expression. Finally, we may now apply Part (i) to see that 2α = |Σ(X)|
also holds.

Determination of |Σ(X)| for an arbitrary set X. More generally, it is possible to
describe |Σ(X)| as a function of |X| in a very straightforward manner. Not surprisingly, the finite
and transfinite cases must be handled separately.

The finite case. If X is finite and |X| = n > 0, then there is a 1–1 correspondence between
Σ(X) and the symmetric group Σn of permutations of {1, 2, · , n}. It is well known that Σn contains
n! elements. Further information on this may be found in Section 4.3 of Rosen, and particularly
on page 321.

The transfinite — or infinite — case. The proof of the preceding exercise is valid for all infinite
sets X whose cardinal numbers satisfy |X ×X| = |X|. At one point in the argument we defined a
map using 0 ∈ R, but in general one can carry out the construction replacing 0 by some arbitrary
fixed element x0 ∈ X. As noted above, by the results of Section VII.4 the identity |X ×X| = |X|
holds for all infinite sets, and consequently the proof implies that for every infinite set X we have
|Σ(X)| = 2|X| = |X||X|.

Relations between the finite and transfinite cases. There is a loose connection between the
computations for |Σ(X)| in the finite and transfinite cases (n! versus αα) in terms of a classical
asymptotic formula for estimating n! discovered by A. de Moivre (1667–1754) and J. Stirling (1692–
1770), which is usually known as Stirling’s Formula:

lim
n→∞

n!

nn
√

2πn e−n
= 1

A discussion of this formula and a relatively elementary derivation of it may be found at the
following online site:

http://en.wikipedia.org/wiki/Stirling’s formula

The formula implies that for all large values of n the percentage error for estimating n! by the
denominator goes to 0 as n → ∞. However, for several reasons it would be stretching things too
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far to assert that the results |Σn| = n! and |Σ(N)| = |N||N| somehow “fit together continuously”
in some precise matehamtical sense.

4. If c = |R| then we have

c ≤ ℵ0 · c ≤ c · c = c

and therefore it is enough to show that for each nonnegative integer n the set of all subsets with n
elements has cardinality c, and likewise for the set of all countably infinite subsets.

Let n be a positive integer. As in Exercise VI.3.1, define a map from subsets of R with n
elements into Rn such that the first coordinate is the least element of the set, the second coordinate
is the smallest of the remaining elements, and so on. We can always find least elements for finite
subsets because the real numbers are linearly ordered. This shows that the cardinality of the set
of subsets with n elements is less than or equal to the cardinality of Rn, which is c. On the other
hand, given a real number r0, it is easy to find a subset with n elements whose least element is
r0, so this gives a 1–1 mapping from R into the set of all such subsets (specifically, let the second
element be r0 + 1, etc.). Therefore the cardinality of the set of all subsets with exactly n elements
is c provide n is a positive integer. Of course, if n = 0 this cardinality is 1. It then follows that the
set of all finite subsets of R has cardinality equal to ℵ0 · c + 1 = c.

To complete the proof it will suffice to show that the set D of all countably infinite subsets of
R also has cardinality c. We can define a 1–1 map from R into this set as before, sending r0 to the
set of all numbers of the form r0 + k where k is a nonnegative integer. This mapping is injective
because each set in the range has a least element and for different real numbers one obtains different
least elements.

Thus it only remains to show the cardinality of this set of subsets is less than or equal to c.

Suppose that B is a countably infinite subset of R. Then there is a 1–1 correspondence from
N to B, so we pick such a mapping hB : N → B (we are using the Axiom of Choice to do this).
We may now compose this chosen bijection with inclusion to obtain a mapping fB from N into
mapping from D to F(N,R).

If we take different subsets we obtain different mappings because their ranges are unequal, and
this means that there is a 1–1 map from D to F(N,R), so that |D| ≤ |R||N|. Since we already
know that c ≤ |D|, everything reduces to proving that |R||N| = c. This is a consequence of the
following chain of equations:

(

2ℵ0

)ℵ0

= 2ℵ0·ℵ0 = 2ℵ0

It follows that the set of countably infinite subsets of R has the same cardinality as R itself.

5. This is very similar to the preceding example. Let X denote the set of continuous real
valued functions on the unit interval, and let Y denote the set of functions defined at rational points
of that interval. There is a natural map from X to Y defined by restricting to the rational points of
the interval, and the statement in the exercise means that this mapping is injective. The reasoning
of the previous problem shows that |Y | = c and hence that |X| ≤ c. On the other hand it is easy
to show that c ≤ |X|; for example, we may define a 1–1 mapping from R into X sending r to the
constant function whose value at every point is equal to r. Therefore it follows that |X| = c.
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VI.6 : Transfinite induction and recursion

Exercises to work

1. It will be necessary to assume Axiom of Choice and Well-Ordering Principle from
Section VII.1 of the lecture notes.

Let A be the original partially ordered set, and let P be a well-ordered set which is in 1–1
correspondence with P(A). Let A+ = A ∪ {A} and extend the partial ordering on A to A+ by
making A ∈ A+ the maximal element. We shall define a nondecreasing map f : P → A+ by
transfinite recursion such that f is strictly increasing on f−1[A].

Denote the minimal element of P by 0, and define f(0) by picking a point in A using a choice
function. Suppose now that we have defined f(β) for all β < α; we need to define f(α). There are
two cases. If there is some z ∈ A such that z > f(β) for all β < α, define f(α) by choosing such a
value of z (again, this requires a choice function). If no such value of z exists, let f(α) = A.

Let B = f [ f−1[A] ]; since P is well-ordered and f is strictly increasing on on f−1[A], it follows
that B is a well-ordered subset of A. Thus it will suffice to show that B is cofinal in A. Suppose
that x ∈ A; we need to show that there is some b ∈ B such that b > x. Assume this does not
hold for some particular choice of x. If this happens then the recursive definition yields a strictly
increasing map from P into A, and in fact the image is contained in the set of all elements less
than x. Since f is strictly increasing it follows that |P | ≤ |A|. However, by construction we have
|P | = |P(A)| > |A|, which yields a contradiction. This means that for each x ∈ A there must be
some b such that b > x, so that B is a cofinal well-ordered subset.

2. Let A be the linearly ordered subset. If A is well-ordered, then the conclusion of the
exercise is true because every nonempty subset of a well-ordered set is well-ordered. — Conversely,
suppose that for each x ∈ A the set of all strict predecessors of A is well-ordered, and let B be
a nonempty subset of A. We need to show that B has a minimal element. Let b0 ∈ B; if b0 is a
minimal element of B, we are done. On the other hand, if b0 is not a minimal element and L(b0)
is the set of strict predecessors of b0, then B ∩ L(b0) is nonempty, and since L(b0) is well-ordered
it follows that B ∩ L(b0) has a minimal element b1. We claim that b1 is a minimal element of B.
For each y ∈ B we have y = b0, y > b0 or y < b0. In the first two cases we have y ≥ b0 > b1, and
in the last case we have b1 ≤ y because then y ∈ B ∩ L(b0) and b1 is a minimal element of the
intersection.

3. Let A be a well-ordered set, and let Aop denote A with the reverse ordering. If A is
infinite, then A contains a subset that has the same order type as

ω := { 0 < 1 < 2 < 3 < 4 < 5 < 6 · · · }

and since ωop does not have a minimal element it follows that Aop is not well-ordered. — Suppose
now that A is finite. In order to prove that Aop is well-ordered, we need to show that every
nonempty subset of A has a maximal element.

We shall prove this by induction on |A|. If |A| = 0 the statement is vacuously true. Similarly,
if |A| = 1, then A has a unique nonempty subset, and its unique element is a maximal element.
Suppose now that we know the result for |A| = n ≥ 1, and suppose that B is a well-ordered set
with (n+1) elements. Let 0 be the minimal element of B, and let B1 = B−{0}. Given a nonempty
subset C ⊂ B, let C1 = C ∩ B1. If C1 is nonempty, then by the induction hypothesis it follows
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that C1 has a maximal element m. Since C ⊂ C1 ∪ {0} and 0 < m, it follows that m is also a
maximal element of C. On the other hand, if C1 = ∅ then C must be equal to {0} and hence 0 is
the maximal element of C.

VII . The Axiom of Choice and related topics

VII.1 : Nonconstructive existence statements

Exercises to work

1. Define g : B → A on f [A] by taking b ∈ f [A] and picking g(b) ∈ A such that f(g(b)) = b,
and define g on B− f [A] by setting g(b) = z for some chosen element z ∈ A. We need to show that
f = f og of . By construction, if a ∈ A, then g(f(a)) satisfies f(g(f(a))) = f(a), so the condition
f = fgf is satisfied.

2. If |A| ≤ |B| then there is a 1–1 mapping f : A→ B, and by Exercise III.4.13 there is a
mapping g : B → A such that g of = idA. The mapping g is onto because a ∈ A can be written as
g(b) where b = f(a). — Conversely, if there is a surjection f : B → A, then by the Axiom of Choice
there is a function s : A → B such that s(a) ∈ f−1[{a}] for all a ∈ A. It follows that f os(a) = a
for all a. We claim that s is 1–1; if s(u) = s(v), then u = f(s(u)) = f(s(v)) = v. Therefore we
have |A| ≤ |B|.

3. To see that Wr ∩Wq = ∅ if q 6= r, observe that the second coordinates of elements in
Wr are all equal to r while the second coordinates of elements in Wr are all equal to q. Therefore
the second coordinates of elements of Wr and Wq are distinct, so that Wr ∩Wq = ∅. — The union
of the sets Wq = ∪k Yk × {k} is equal to qk Yk by the definition of the latter. — For each q there
is a 1–1 correspondence between Yq and Wq = Yq × {q} sending y to (y, q).

4. For each k we are given a bijection fk : Yk → Vk; denote the respective inverses by gk.
If we define f : qk Yk → qk Vk by f(y, k) = (fk(y), k), then the map g : qk Vk → qk Yk defined
by g(v, k) = (gk(v), k) satisfies f og = id and g of = id, so that g is an inverse to f and both maps
are bijections.

VII.2 : Extending partial orderings

Exercises to work

1. The standard alphabetical ordering is a linear ordering that contains the given partial
ordering. One way to visualize this is to move the pieces of the Hasse diagram slightly so that a falls
below b, etc. — One can check this more methodically by constructing a matrix whose rows and
columns correspond to the points of the original set in alphabetical order. Saying that the usual
alphabetical ordering contains the given one amounts to saying that all ordered pairs for which
the original relation holds must lie on or above the main diagonal. The following chart indicates
this. In the latter some elements on or above the main diagonal are marked with numbers. If a
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number appears in the position (x, y), it means that xRy and there is a chain of length k such that
xRx1R · · · Rxk = y; if nothing appears, then no such chain exists.

a b c d e f g h i j k l m
a 0 1 2 2 3 3 4 4
b 0 1 1 2 2 3 3 4 4
c 0 1 2 3 4 4
d 0 1 1 2 2 3 3
e 0 1 2 2 3 3
f 0 1 2 3 3
g 0 1 2 2
h 0 1 1 2 2
i 0 1 2
j 0 1
k 0 1 1
l 0
m 0

2. The usual ordering works because if a and b are positive integers such that a divides b,
then a ≤ b.

3. One way of finding a suitable linear ordering is to draw a Hasse diagram as in Exercise
1. The file hasse-VII-2-3.JPG in the online directory depicts one such possibility; namely, the
linear ordering given by the following chain:

A < G < B < L < C < H < D < M < K < E < F

As before, one way to visualize this is to move the pieces of the Hasse diagram slightly. More
methodically, this can be checked by constructing a matrix whose rows and columns correspond to
the points of the original set in the order listed above. Saying that the new linear ordering contains
the given partial ordering amounts to saying that all ordered pairs for which the original relation
holds must lie on or above the main diagonal.

Here is the chart which corresponds to the one in Exercise 1; the notation for the entries of
the chart is the same as for the earlier exercise.

A G B L C H D M K E F
A 0 1 1 1 2 2 3 2 3 4 3
G 0 1 1 2 3 3 4
B 0 1 2 3 4
L 0 1 2
C 0 1 2 3
H 0 1 1 2 2
D 0 1 2
M 0 1
K 0 1
E 0 1
F 0
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4. The main thing to do is to order the subsets so that the subsets with p elements come
before the subsets with q elements if p < q. For example, this can be done as follows:

∅ < {1} < {2} < {3} < {1, 2} < {1, 3} < {2, 3} < {1, 2, 3}

One interesting exercise might be to determine exactly how many linear orderings contain the given
partial ordering.

5. This is similar to Exercise 1. Once again, the standard alphabetical ordering is a linear
ordering that contains the given partial ordering, and one way to visualize this is to move the pieces
of the Hasse diagram slightly so that a falls below b, etc. — Once again, it is possible to check
this more methodically by constructing a matrix whose rows and columns as in Exercise 1. Here is
what one obtains for the exercise we are now considering:

a b c d e f g h i j k l
a 0 1 2 3 4
b 0 1 1 2 2 3 3 4
c 0 1 1 2 3 3 4
d 0 1 2 3 3 4
e 0 1 2 3
f 0 1 2 2 3
g 0 1 2 2 3
h 0 1 2
i 0 1 1 2
j 0 1
k 0 1
l 0

VII.3 : Equivalence proofs

Exercises to work

1. Let F be a (nonempty) family of subsets of A of finite character. We want to apply
Zorn’s Lemma to this family.

In order to do so, we need to show that linearly ordered subsets of F have upper bounds in
F. Suppose that L ⊂ F is a linearly ordered subfamily consisting of the sets Lα. We claim that
M = ∪αLα also belongs to F, and we shall prove this using the finite character assumption.

Suppose that C ⊂ M is finite with elements c1 , · · · , ck. Then we can find Lj ∈ L such that
cj ∈ Lj for all j. Given any finite subset of a linearly ordered set, it is always possible to find a
maximal element; applying this to the present situation, we can find some m such that Lm contains
Lj for all j. It follows that C ⊂ Lj , so the finite character assumption implies that C ∈ F. Thus
we have shown that every finite subset of M belongs to F, and since the latter has finite character
it follows that M itself belongs to F. As noted before, one can now apply Zorn’s Lemma to find a
maximal subset in F.
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2. The hypotheses should have included an assumption that all the subsets in F are
nonempty (the conclusion makes no sense if A is the empty set). — Let P+(S) be the set of all
nonempty subsets of S, and let c : P+(S) → S be a choice function on P+(S). Let C ⊂ S be the
image of c|F. Suppose now that A ⊂ F. Then we know that c(a) ∈ C ∩ A. On the other hand, if
x ∈ C ∩ A, then x = c(b) for some subset B, and it follows that x ∈ B as well. Since A ∩B = ∅ if
A 6= B (this is the condition on F), it follows that x must be equal to c(a), and therefore we know
that C ∩A = { c(a) }.

VII.4 : Additional consequences

Exercises to work

1. Once again we shall follow the hint, starting by choosing Xi and Yj such that |Xi| = αi

and |Yj | = βj . We need to prove that there is no surjection from
∐

i Xi to
∏

i Yi. In other words,
given an injective mapping f :

∐

i Xi → ∏

i Yi, we need to find a point in the codomain which
does not lie in the image of f .

For each i let hi be the composite

Xi −→
∐

j

Xi −→
∏

j

Yj −→ Yi

where the first map is the standard injection of Xi into the disjoint union and the last map is the
projection onto Yi. The cardinality inequality implies that hi cannot be surjective, so there is some
yi ∈ Yi which does not lie in the image of hi. Let y ∈ ∏

i Yi be the element whose coordinates are
given by the corresponding elements yi.

However, if y did lie in this image, then for some k in the indexing set J the element y would
be the image of an element coming from Xk. This would mean that the coordinate yk would be
equal to hk(x), where x ∈ Xk and the image of x in qjXj maps to y. Since yk does not lie in the
image of hk by construction, it follows that y cannot lie in the image of f . Therefore we know that

∑

i

αi 6≥
∏

i

βi

and by the linear ordering property for cardinal numbers it follows that the number on the left
hand side is strictly less than the number on the right hand side.

2. Under the conditions of this exercise one can prove the following weaker inequality:

∑

i

αi ≤
∏

i

βi

PROOF. As suggested by the hint, the first step is to note that if α is an infinite cardinal number,
then we have

α ≤ α + 1 ≤ α + ℵ0 = α

because α+ ℵ0 = α for every infinite cardinal number, so that α+ 1 = α also holds.

As in the preceding exercise, choose sets Xi and Yj such that |Xi| = αi and |Yj | = βj . As
elsewhere, we let σ(C) = C ∪{C} and use the fact that C 6∈ C to conclude that σ(C) is given by C
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plus some point which does not lie in C. Since all cardinal numbers in sight are infinite, it follows
that for all i the sets σ(Xi) amd σ(Yi) have the same cardinalities as Xi and Yi respectively. The
assumption that αi ≤ βi for all i implies that we have injections gi : Xi → Yi.

We shall now define a mapping

F :
∐

j

σ(Xj) −→
∏

j

σ(Yj)

such that on the image of each Xi the map takes the point corresponding to x ∈ Xi to the point
in

∏

j Yj whose jth coordinate equals gi(x) if j = i and Xj if j 6= i. Since the images of Xu and
Xv are disjoint if u 6= v, it follows that we obtain a well defined function in this manner.

It will suffice to prove that F is injective. Suppose that F (p) = F (q). By definition, for all but
one choice of indexing variable, the kth coordinate of F (p) is equal to the extra point Xk ∈ σ(Xk),
and a similar statement holds for F (q). Therefore the exceptional coordinate is the same for both
p and q. However, if ` is this exceptional coordinate, then by construction p and q both lie in the
image of X`. The latter implies that F (p) = F (q) if and only if g`(p) = g`(q). Since g` is injective,
it follows that p = q. Therefore F is 1–1 as required.

3. 9i) Let A,B,C be sets such that |A| = α, |B| = β, and |C| = γ. The condition α ≤ β
means there is an injection j : A→ B. Define an associated map of function sets

j# : F(C,A) −→ F(C,B)

by the formula j#(f) = j of . The assertion about cardinal numbers will follow if we can prove that
j# is injective.

Suppose that f1, f2 ∈ F(C,A) satisfy j#(f1) = j#(f2). Then j of1 = j of2, so that j(f1(x)) =
j(f2(x)) for all x ∈ C. Since j is injective, this means that f1(x) = f2(x) for all x ∈ C, which in
turn implies that f1 = f2. Therefore the map j# is injective as required.

(ii) One way to do this is to start with the special cases where α and β are (finite) powers of
2. More precisely, if β = 2k for some k ≥ 1 we shall prove that βγ = 2γ .

By the transfinite laws of exponents the left hand side is equal to 2kγ , and since k · γ = γ for
every positive integer k and transfinite cardinal γ, the desired conclusion follows immediately when
β is a positive integral power of 2.

For general choices of β ≥ 2 we can find powers of 2 such that

2p = β0 ≤ β ≤ β1 = 2q

and if we combine this with the first part of the exercise, we see that

2γ ≤ β γ
0 ≤ βγ ≤ β γ

1 = 2γ

where the first and last equations follow from the discussion in the preceding paragraph. We can
now use the Schröder-Bernstein Theorem to conclude that βγ = 2γ .

4. Suppose that we have an infinite non-limit ordinal µ + 1 and a 1–1 correspondence
between the corresponding set S[µ+ 1] and some other set X. Then we have the cardinal number
identities

|X| =
∣

∣S[µ+ 1]
∣

∣ =
∣

∣S[µ]
∣

∣ + 1 =
∣

∣S[µ]
∣

∣
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so that there is a 1–1 correspondence between X and the elements of the ordinal number µ.
Therefore µ+ 1 cannot be the least ordinal for which there is a 1–1 correspondence, and it follows
that if λ0 is the minimum such ordinal, then λ0 must be a limit ordinal.

5. All finite ordinals are cardinal numbers, and the first infinite ordinal ω is equal to ℵ0.
Thus the next infinite ordinal, namely ω+ 1, is the first ordinal number that is not also a cardinal
number.

6. We shall solve this in a sequence of steps:

First, we shall use a previous exercise to prove the result when |A| ≤ 2ℵ0 .

Let D(A) denote the countably infinite subsets. Since A contains a countably infinite subset
B, it follows that 2ℵ0 = |D(B)| ≤ |D(A)|, and since there is an injective mapping from A to R it
also follows that |D(A)| ≤ D(R)| = 2ℵ0 , Therefore the number of countably infinite subsets is 2ℵ0

by the Schröder-Bernstein Theorem.

From this point on assume that |A| ≥ 2ℵ0 . Next, we shall prove that the set of countably
infinite subsets is in 1 − 1 correspondence with the set AN of functions from N to A as
follows: Given a countably infinite subset E and a specific 1 − 1 correspondence from N

onto E we shall obtain a map from N to A that turns out to be 1 − 1.

Since the image of the map associated to a subset B is equal to B by construction, it follows
that different subsets determine functions with different images. Thus the functions must also be
different.

By the Schröder-Bernstein Theorem it will be enough to define a map from AN to count-
ably infinite subsets of A. There is a 1 − 1 map from such functions to countable subsets
of N ×A given by taking the graphs of functions. We shall use this to define the desired
map to countable subsets of A? A comparison of |A| and |N ×A| will be helpful here.

Since A is infinite, the rules for transfinite cardinal arithmetic imply that |A| = |N×A|. Thus
it is also enough to prove that the number of countably infinite subsets of N×A is at least as large
as the cardinality of AN. But given two functions from N to A, their images are distinct countably
infinite subsets of the product N × A. Note that the graphs are always infinite because for each
n ∈ N we have a point in N×A whose first coordinate is equal to n.

Finally, we shall use a modified version of the Zorn’s Lemma argument proving α · α = α
for infinite cardinals α to prove that αω = α. Specifically, we shall consider the collection
of all pairs (B,ϕ) consisting of B ⊂ A satisfying |B| ≥ 2ℵ0 and a bijection ϕ : BN → B,
with a partial ordering such that (B,ϕ) ≤ (D,ψ) if and only if B ⊂ D and ψ = ϕ on BN.
We may use the previously established fact that 2c = cc (where c = 2ℵ0) from the proof
of Exercise rm VI.4.3 to show this set is nonempty.

By assumption A has a subset B such that |B| = |R|, and we know there is a 1–1 correspon-
dence between R and RN by the earlier exercise.

We shall verify that Zorn’s Lemma applies and hence there is a maximal pair, say (B,ϕ).

Given a linearly ordered collection (Bα, ϕα), we need to show that their union belongs to
the given collection. Let B∗ = ∪Bα; then it follows immediately that one obtains a well defined
mapping ϕ∗ : (B∗)N → B∗ from the mappings ϕα, so one needs to check that this map is bijective.
To see it is injective, suppose x, y ∈ (B∗)N. Then there is some α such that x, y ∈ (Bα)N, and
ϕ∗(x) = ϕ∗(y) implies ϕα(x) = ϕα(y). Since ϕα is injective, this means x − y. To see that ϕ∗ is
surjective, let z ∈ B∗, so that z ∈ Bα for some α and hence lies in the image of ϕα, which means it
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also lies in the image of ϕ∗. Thus we have shown that in our partially ordered set, every linearly
ordered subset has an upper bound, and this means that Zorn’s Lemma applies.

If |B| = |A| we are done, so suppose instead that |B| < |A|. In this case we shall show
there is some C ⊂ A such that C ⊂ A−B and |C| = |B|.

If this were false then the cardinality of every subset of A−B would be strictly less than |B|,
and in particular |A − B| < |A|, so that |A| would be less than |B|, which is less than |A|. This
contradiction shows that there must be some subset of A−B whose cardinality is equal to |B|. In
fact, one has |A − B| = |A| > |B| in our situation, but we shall not need the full strength of this
conclusion.

We now explain why (B ∪C)N can be written as a union of pairwise disjoint subsets SY ,
where Y runs over all subsets of N such that a ∈ SY if and only if ak ∈ B for k ∈ Y and
ak ∈ C otherwise. We shall show that each such set in 1–1 correspondence with BN and
CN.

When we write the product as a union of the pairwise disjoint subsets SY , we are merely
sorting the elements of the product into subsets depending upon which coordinates lie in B and
which lie in C. Since B and C are disjoint, these two properties are mutually exclusive. Each of
the sets in question is a product for which every factor is either B or C. Therefore all the factors
are in 1–1 correspondence with both B and C, and it follows (from an exercise in Section V.1) that
every set SY is in 1–1 correspondence with BN and CN

If P1(N) denotes the proper subsets of N, we shall construct a bijection from P1(N)×C
to C.

The set P1(N) is obtained from the entire power set P(N) by deleting one subset, and since
we are working with infinite sets the cardinalities of P1(N) and P(N) are equal. Since |B| = |C| ≥
|P(N)|, it follows that |P1(N) × C| = |P(N) × C| = |C|.

We shall show there is a bijection from (B ∪C)N to B ∪C sending SN = BN to B by the
maximal map and sending the other sets SY to C by the composites of SY → {Y } × C
and P1(N) × C → C.

It is only necessary to define the bijection on the pieces. The assertion gives the definition on
SN = BN, and it describes the map on the remaining pieces as well. We need to check this map
is bijective. It will suffice to show that the partial composite ∪Y 6=N SY → P1(N) × C is bijective
because the total composite sends the codomain to C, which is disjoint from B.

By construction the map sends the pairwise disjoint subsets SY into the pairwise disjoint
subsets {Y } ×C, so the proof of the bijectivity assertion reduces to verifying the latter for each of
the pieces we have described. But on these pieces the map is a bijection by construction.

We claim this a contradiction, and we shall determine the source of the contradiction.

We have constructed a bijection from (B ∪ C)N to B ∪ C which properly contains a maximal
bijection. The problem arose in our assumption that |B| was strictly less than |A|, so the latter
must be false and we must have |B| = |A|. As noted before, this proves the identity |AN| = |A|
when |A| ≥ |R| and thus also completes the proof of the exercise.

7. Since every set can be well-ordered, this is true for R in particular. Therefore the set of
all uncountable ordinals is nonempty, so it must contain a least element, which we are calling Λ1

here.
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To prove the assertion about least upper bounds, we use the standard von Neumann model for
the ordinals (ordered by α < β ⇐⇒ α ∈ β). Suppose that we have a countable family of ordinals
αk ∈ Λ1 and we consider the union C of all ordinals β such that β ≤ αk for some k. Now each αk

is countable, si this means that C is countable. By construction, if γ ≤ β for some β ∈ C, then
γ ∈ C. Now Λ1 − C cannot be countable since C is countable but Λ1 is not. Therefore Λ1 − C is
nonempty and as such has a least element. By a previous sentence we know that this least element
δ0 must be strictly greater than every element of C and hence δ0 is an upper bound for the set of
all ordinals αk.

To conclude we must find a least upper bound for this set of ordinals. Suppose that δ0 is not
a least upper bound. Then there is some δ1 < δ0 that is also an upper bound. We claim that δ1
must be a least upper bound. By construction of δ0 we know that anything strictly less than δ0
is not greater than every element of C. Hence there is some γ ∈ C such that δ1 ≤ γ < δ0. Now
γ < αm for some m and by the defining properties of δ0 we also have δ1 ≤ αm < δ0. On the other
hand, since δ1 is an upper bound we also have the reverse inequality αm ≤ δ1 so that equality must
hold. Thus we have shown that αm ≥ αk for all k, which means that αm must be the least upper
bound for the original set of ordinals.

Postscript. In fact, if δ0 is not the least upper bound, then we have δ0 = αm + 1 because δ0
is the least element that is greater than each of the elements in C.

8. We shall need the following elementary fact about linearly ordered sets:

LEMMA. If Y is a linearly ordered set and y1, · · · , yn ∈ Y , then there is some k such that
yk ≥ yj for all j.

Proof. This is trivial if n = 1; assume it is true for n = m, suppose we are given
y1, · · · , ym+1 ∈ Y , and let Y0 = Y − {ym+1}. Then by the induction hypothesis there is some
q such that yq ≥ yj for j ≤ m. Since Y is linearly ordered we know that either yq ≤ ym+1 or
ym+1 = yq. In the first case it follows that ym+1 ≥ yj for all j ≤ m+1, and in the second it follows
that yq ≥ yj for all j ≤ m+ 1.

Solution to the exercise. Let F be a family of subsets of some set S with the finite intersection
property, and let G be the set of all families G of subsets of S such that F ⊂ G and G has the
finite intersection property; then G is partially ordered with respect to inclusion. The proof of the
statement in the exercise reduces to showing that the hypothesis in Zorn’s Lemma is true for G.

Let L be a nonempty linearly ordered subset of G, and let L∗ = ∪{L ∈ L}. Clearly L ⊂ L∗ for
all L ∈ L; we claim that L∗ ∈ G; i.e., F ⊂ L∗ and L∗ has the finite intersection property. The first
statement is clear since F is contained in every L ∈ L. To prove the second, suppose we are given
A1, · · · , An ∈ L∗. For each j there is some Lj ∈ L such that Aj ∈ Lj . Since L is linearly ordered,
the lemma shows there is some q such that Lj ⊂ Lq for all j. Therefore we have A1, · · · , An ∈ Lq,
and since Lq has the finite intersection property we conclude that ∩j Aj 6= ∅. — We have now
shown that G is a partially ordered set in which linearly ordered subsets have upper bounds, and
therefore G has a maximal element G∗ by Zorn’s Lemma. By construction G∗ is a maximal family
of subsets with the finite intersection property such that F ⊂ G∗.

Further comment. In many uses of Zorn’s Lemma, it is important to understand what maxi-
mality implies for a set H which properly contains the maximal set G∗. In this problem, it means
that one can find a finite collection of subsets Bt in H such that ∩t Bt = ∅. Here are two other
facts about the maximal family G∗ in the exercise that are true: (i) The family G∗ is closed under
finite intersections. (ii) If we are given A ∈ G∗ and C ⊂ S such that A ⊂ C, then C ∈ G∗. — Both
of these follow because G∗ ∪ {C} has the finite intersection property; writing up this argument in
detail is left to the reader.
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