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I :    General considerations 
 
  

This is an upper level undergraduate course in set theory.  There are two official texts.   
 

P. R. Halmos, Naive Set Theory (Undergraduate Texts in Mathematics). 
Springer – Verlag, New York, 1974.  ISBN: 0–387–90092–6. 

 
This extremely influential textbook was first published in 1960 and popularized the name 
for the “ working knowledge”  approach to set theory that most mathematicians and 
others have used for decades.  Its contents have not been revised, but they remain 
almost as timely now as they were nearly fifty years ago.   The exposition is simple and 
direct.  In some instances this may make the material difficult to grasp when it is read for 
the first time, but the brevity of the text should ultimately allow a reader to focus on the 
main points and not to get distracted by potentially confusing side issues.     
 

S. Lipschutz, Schaum's Outline of Set Theory and Related Topics 
(Second Ed.). McGraw–Hill, New York, 1998.  ISBN 0–07–038159–3.    

 
The volumes in Schaum’s Outline Series are designed to be extremely detailed accounts 
that are written at a level accessible to a broad range of readers, and this one is no 
exception.  As such, it stands in stark contrast to Halmos, and in this course it will serve 
as a workbook to complement Halmos. 
 
The following book has also been used for this course in the past and might provide 
some useful additional background.  It is written at a higher level than Halmos but it is 
also contains very substantially more detailed information.  
 

D. Goldrei, Classic Set Theory: A guided independent study. 
Chapman and Hall, London, 1996.  ISBN 0–412–60610–0.    

 
Still further references (e.g., the text for Mathematics 11 by K. Rosen) will be given later. 
 
These course notes are designed as a further source of official information, generally at 
a level somewhere between the two required texts.  Comments on both Halmos and 
Lipschutz will be inserted into these notes as they seem necessary. 
   

  
I.1 : Overview of the course 

 
 

(Halmos, Preface;  Lipschutz, Preface) 
 

 
Set theory has become the standard framework for expressing most mathematical 
statements and facts in a formal manner.  Some aspects of set theory now appear at 
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nearly every level of mathematical instruction, and words like union and intersection 
have become almost as standard in mathematics as addition, multiplication, negative 
and zero.  The purpose of this course is to cover those portions of set theory that are 
used and needed at the advanced undergraduate level. 

 
In the preface to Naive Set Theory, P. R. Halmos (1916 – ) proposes the following 
characterization of the set – theoretic material that is needed for specialized 
undergraduate courses in mathematics:    

 
Every mathematician agrees that every mathematician must know some 
set theory; the disagreement begins in trying to decide how much is 
some.  The purpose … is to tell the beginning student the basic set-
theoretic facts … with the minimum of philosophical discourse and 
logical formalism.  The point of view throughout is that … the concepts 
and methods … are merely some of the standard mathematical tools. 

 
Following Halmos, whose choice of a book title was strongly influenced by earlier 
writings of H. Weyl (1885 – 1955), mathematicians generally distinguish between the 
“naïve” approach to set theory which provides enough background to do a great deal of 
mathematics and the axiomatic approach which is carefully formulated in order to 
address tough questions about the logical soundness of the subject.  We shall discuss 
some key points in the axiomatic approach to set theory, but generally the emphasis will 
be on the naïve approach.  The following quotation from Halmos provides some basic 
guidelines: 

 
axiomatic set theory from the naïve point of view … axiomatic in that 
some axioms for set theory are stated and used as the basis for all 
subsequent proofs … naïve in that the language and notation are those  
of ordinary informal (but formalizable) mathematics. A more important 
way in which the naïve point of view predominates is that set theory is 
regarded as a body of facts, of which the axioms are a brief and 
convenient summary 

 
The Halmos approach to teaching set theory has been influential and has proven itself in 
a half century of use, but there is one point in the preface to Naive Set Theory that 
requires comment:   

 
In the orthodox axiomatic view [of set theory] the logical relations 
among various axioms are the central objects of study. 

 
An entirely different perspective on axiomatic set theory is presented in the following 
online site: 

 
http://plato.stanford.edu/entries/set-theory 

 
Much of the research in axiomatic set theory that is described in the online site involves 
(1) the uses of set theory in other areas of mathematics, and (2) testing the limits to 
which our current understanding of mathematics can be safely pushed. 

 
There is some overlap between the contents of this course and the lower level course 
Mathematics 11: Discrete Mathematics.   Both courses cover basic concepts and 
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terms from set theory, but there is more emphasis in the former on counting problems 
and more emphasis here on abstract constructions and properties of the real number 
system.  A related difference is that there is more emphasis on finite sets in Mathematics 
11.  At various points in the course it might be worthwhile to compare the treatment of 
topics in this course and its references with the presentation in the corresponding text for 
Mathematics 11: 

 
K. H. Rosen, Discrete Mathematics and Its Applications (Fifth Ed.). 
McGraw – Hill, New York, 2003. ISBN: 0– 07293033– 0.   Companion 
Web site: http://www.mhhe.com/math/advmath/rosen/ 

 
Some supplementary exercises from this course will be taken from Rosen, and 
supplementary references to it will also be given in these notes as appropriate. 
 
One basic goal of an introduction to the foundations of mathematics is to explain how 
mathematical ideas are expressed in writing.  Therefore a secondary aim of these notes 
(and the course) is to provide an overview of modern mathematical notation.  In 
particular, we shall attempt to include some major variants of standard notation that are 
currently in use. 
 
At some points of these notes there will be discussions involving other areas of the 
mathematical sciences, mainly from lower level undergraduate courses like calculus (for 
functions of one or several variables), discrete mathematics, elementary differential 
equations, and elementary linear algebra.  The reason for such inclusions is that we are 
developing a foundation for the mathematical sciences, and in order to see how well 
such a theory works it is sometimes necessary to see how it relates to some issues from 
other branches of the subject(s).  
 
The most important justification for the course material is that provides a solid, relatively 
accessible logical foundation for the mathematical sciences and an overview of how one 
reads and writes mathematics.  However, this does not explain how or why set theory 
was developed, and some knowledge of these points is often useful for understanding 
the mathematical role of set theory and the need for some discussions that might initially 
seem needlessly complicated.  At various points in these notes – and particularly for the 
rest of this unit – we shall include material to provide historical perspective and other 
motivation.  
 
 

Starred proofs and appendices 
 
 
We shall follow the relatively standard notational convention and mark proofs that are 
more difficult, or less central to the course, by one to four stars.  Generally the number of 
stars reflects a subjective assessment of relative difficulty or importance; items not 
marked with any starts have the highest priority, items with one star have the next 
highest priority, and so on.  Section V.3 is an exception to this principle for the reasons 
given at the beginning of that portion of the notes. 
 
There are also several appendices to sections in the notes; these fill in mathematical 
details or cover material that is not actually part of the course but is closely related and 
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still worth knowing.  Since this material can be skipped without a loss of logical 
continuity, we have also passed on inserting stars in the appendices. 
 
 

Exercises 
 
 
As in virtually every mathematics course, working problems or exercises is important, 
and for each unit there are lists of questions, problems or exercises to study or attempt.  
Normally the exercises for a section will begin with a list of examples from Lipschutz 
called “ Problems for study.”    Solutions for all these are given in Lipschutz, but 
attempting at least some of them before looking at the solutions is strongly 
recommended.  Each section will also have a list of “ Questions to answer”  or 
“ Exercises to work.”    Answers and solutions for these will be given separately. 
  

 
 

I.2 : Historical background and motivation 
 
 

It is important to recognize that mathematicians did not develop set theory simply for 
pedagogical or aesthetic reasons, but on the contrary they did so in order to understand 
specific problems in some fundamentally important areas of the subject.  Three of the 
most important influences in the development of set theory were the following 

 
1. There was an increasing awareness among later 19th century 

mathematicians that a more secure logical framework for 
mathematics was needed. 

 
2. Several 19th century mathematicians and logicians discovered the 

algebraic nature of some basic rules for deductive logic. 
 

3. Most immediately, there was a great deal of research at the time 
to understand the representations of functions by means of 
trigonometric series.  

 
The first of these reflects the unavoidable need for something like set theory in modern 
mathematics, while the second reflects the formal structure of set theory and the third 
reflects its principal substance, which is the study of sets that are infinitely large.  In brief, 
these are the “why,” the “how,” and the “what” of set theory.  We shall discuss each of 
these in the order listed.   

 
At various points in this section and elsewhere in these notes, we shall refer to the text 
for the course Mathematics 153: History of Mathematics: 

 
D. M. Burton, The History of Mathematics, An Introduction (Sixth 
Ed.).  McGraw – Hill, New York, 2006.  ISBN: 0– 073– 05189– 6. 

 
The excellent online MacTutor History of Mathematics Archive located at the site 
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http://www-groups.dcs.st-and.ac.uk/~history/index.html 
 

contains extensive biographical information for more than 1100 mathematicians 
(including many women and individuals from non-Western cultures) as well as an 
enormous amount of other material related to the history of mathematics. 

 
We now begin our summary of historical influences leading to the development of set 
theory.    

 
The need for more reliable logical foundations.   Most areas of human knowledge are 
now organized using deductive logic in some fashion, and the ancient Greek formulation 
of mathematics in such terms was one of the earliest and most systematic examples.  
With the discovery of irrational numbers, Greek mathematics used geometrical ideas as 
their logical foundation for mathematics, and with the passage of time Euclid’s Elements 
emerged as the standard reference.  This standard for logical soundness remained 
unchanged for nearly 2000 years, and the following quotation from the works of Isaac 
Barrow (1630 – 1677) reflects this viewpoint: 
 

Geometry is the basic mathematical science, for it includes arithmetic, and 
mathematical numbers are simply the signs of geometrical magnitude. 

 
Barrow’s viewpoint was adopted in the celebrated work,� Philosophiæ Naturalis Principia 
Mathematica, written  by his student Isaac Newton (1642 – 1727).  On the other hand, 
the development of calculus in the 17th century required several constructions that did 
not fit easily into the classical Greek setting.  In this context, it is slightly ironic that 
Barrow deserves priority for several important discoveries leading to calculus. 
 
A simple – probably much too simple – description of calculus is that it is a set of 
techniques for working with quantities that are limits of successive approximations.  
Probably the simplest illustration of this is the area of a circle, which is the limit of the 
areas of regular n – sided polygons that are inscribed within, or circumscribed about, the 
circle as n becomes increasingly large.   During the Fifth Century B. C. E., Greek 
mathematicians and philosophers discovered that a casual approach to infinite 
processes could quickly lead to nontrivial logical difficulties; the best known of these are 
contained in several well known paradoxes due to Zeno of Elea (c. 490 – 425 B. C. E.; 
see pages 103 – 104 of Burton for more details).  The writings of Aristotle (384 – 322 B. 
C. E.) in the next century helped set a course for Greek mathematics that avoided the 
“ horror of the infinite.”   When Archimedes (287 – 212 B. C. E.) solved numerous 
problems from integral calculus, his logically rigorous proofs of the solutions used 
elaborate arguments by contradiction in which he studiously avoided questions about 
limits. 
 
This stiff resistance to thinking about the infinite eventually weakened, in part due to 
influences from Indian mathematics, which was far more open to discussing infinity, and 
also in part due various investigations in mathematics and philosophy during the late 
Middle Ages.  When interest in problems from calculus reappeared towards the end of 
the 16th century, there were many workers in the area who used infinite processes freely, 
while there were also some who had reservations about some or all such techniques.   
Since the methods of calculus were giving reliable and consistent answers to questions 
that had been previously out of reach, the resolution of such misgivings was an 
important issue.  In the discussions of this problem which took place during the 17th and 
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18th centuries, it had become clear that calculus involves limit concepts that are beyond 
normal geometrical experience.  We shall not attempt to retrace the entire development 
of this, but instead we shall concentrate on some important developments from the 19th 
century.  The first of these was the relatively precise definition of limit due to A. – L. 
Cauchy (1789 – 1857)  in 1821; this was further refined into the modern definition of limit 
using δδδδ and εεεε which is due to K. Weierstrass (1815 – 1897).  Another important 
development was the critical analysis of convergence questions for infinite series, 
particularly in the writings of N. H. Abel (1802 – 1831).  A third development was the 
realization that certain basic facts about continuous functions required rigorous logical 
proofs.  Examples include the Intermediate Value Theorem and its proof by B. Bolzano 
(1781 – 1848).  This listing of developments is definitely (and deliberately!) not 
exhaustive, but it does illustrate the 19th century activity to put the content of calculus on 
a logically sound foundation. 
 
Ultimately such basic facts from calculus depend upon a firm understanding of the real 
numbers themselves.  Greek mathematicians turned to geometry as a foundation for 
mathematics precisely because their understanding of the real numbers was incomplete.  
However, the work of Eudoxus of Cnidus (c. 408 – 355 B. C. E.) yielded one very 
important property of real numbers; namely, between any two real numbers there is a 
rational number.  By the end of the 16th century our usual understanding of real numbers 
in terms of infinite decimals was a well established principle in European mathematics, 
science and engineering.  The final insight in the process was due to R. Dedekind (1831 
– 1916), and it was a converse to the principle implicitly due to Eudoxus; specifically, the 
real numbers are in some sense the largest possible number system in which 
everything can be approximated by rational number to any desired degree of accuracy.  
Justifying this viewpoint in a logically rigorous manner requires the methods and 
results of set theory. 
 
At the same time that mathematicians were developing a new logical foundation for 
calculus during the 18th and 19th centuries, still other advances in mathematics led to 
even more serious questions about the foundations of mathematics as they had been 
previously understood.  One philosophical basis for using geometry as a foundation for 
mathematics is to view the postulates of Euclidean geometry as absolutely inevitable 
necessities of thought, much like the fact that two plus two equals four.  In particular, the 
18th century philosophical writings of I. Kant (1724 – 1804) were particularly influential in 
viewing the basic facts of geometry as intuitions that are independent of experience.   
When 19th century mathematicians such as J. Bolyai (1802 – 1860), N. Lobachevsky 
(1793 – 1856) and C. F. Gauss (1777 – 1855) realized that there was a logically 
consistent alternative to the axioms for Euclidean geometry, the Kantian position 
became far more difficult to defend.   Further information on the Non – Euclidean 
geometry studied by these mathematicians appears on pages 561 – 601 of Burton. 
 
The development of a mathematically rigorous treatment of calculus had an implication 
for classical Euclidean geometry that was largely unanticipated.  When mathematicians 
examined classical geometry in light of the logical standards that they needed for 
calculus, they realized that the classical framework did not meet the new standards.  For 
example, concepts like betweenness of points on a line and points lying on the same or 
different sides of a line were generally ignored in Euclid’s Elements.  One way to 
illustrate the need for treating such matters carefully is to see what can go wrong if they 
are dismissed too casually.  A standard example in this direction is the “proof” in the 
online reference below, which is attributed to W. Rouse Ball (1850 – 1925). This looks 
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very much like a classical Greek proof, but it reaches the obviously false conclusion that 
every triangle is isosceles:   
 

http://www.mathpages.com/home/kmath392.htm 
 
The need to repair the foundations of classical Greek geometry further 
underscored the urgent need to have an entirely new logical foundation for 
mathematics.    
 
In fact, the adoption of set theory as a foundation for mathematics is also a key step 
towards bringing classical Greek geometry up to modern logical standards.  A discussion 
of this work is beyond to scope of these notes, but some further information is contained 
on pages 619 – 621 of Burton. 

 
The use of algebraic methods to analyze logical questions.  Traditionally, logic was 
studied as a branch of philosophy, and the ancient Greek approach to mathematics 
established the role and usefulness of logic in studying mathematics.  Eventually 
mathematicians and logicians realized that, conversely, some ideas from mathematics 
were also useful in the analysis of logic.  Some early examples of logical symbolism 
appear in the work of J. L. Vives (1492 – 1540) and J. H. Alsted (1588 – 1638).   Fairly 
extended discussions appear in papers of G. W. von Leibniz (1646 – 1716) that were not 
published during his lifetime, and during the 18th century there were several further 
tentative probes in this direction by others such as Ch. von Wolff (1679 – 1754), G. 
Ploucquet (1716 – 1790), J. H. Lambert (1728 – 1777), and L. Euler (1707 – 1783).  
However, sustained and productive interest in the mathematical aspects of logic began 
in the middle of the 19th century, and since that time mathematical ideas have played a 
very important (but not exclusive) role in this subject.  More recently, the importance of 
formal logic for computer science has been a major source of motivation for further 
research.   
 
The name mathematical logic is due to G. Peano (1858 – 1932), and the subject is also 
often called symbolic logic (although not everyone necessarily agrees these terms have 
identical meanings). Mathematical logic still includes the logic of classical civilizations, 
for example as summarized in the Organon of Aristotle or the Nyaya Sutras of the 
Indian Philosopher Aksapada Gautama (conjecturally around the Second Century B. C. 
E., but possibly as early as 550 B. C. E. or as late as 150 A. D.), or the logic that was 
developed in ancient Chinese civilization probably around the time of Aristotle, but it is 
developed more like a branch of abstract algebra.   

The emergence of mathematical methods as an important factor in logic was firmly 
established with the appearance of the book, The Mathematical Analysis of Logic, by 
G. Boole (1815 – 1864) in 1847.  Boole’s work contained a great deal of new material, 
but in some respects it also drew upon earlier discoveries, writings and ideas due to R. 
Whately (1787 – 1863), G. Peacock (1791 – 1858), G. Bentham (1800 – 1884, better 
known for his work as a botanist), A. De Morgan (1806 – 1871) and William Stirling 
Hamilton (1788 – 1856); it should be noted that the latter was a Scottish logician and not 
the same person as the better known Irish mathematician William Rowan Hamilton 
(1805 – 1865), who is recognized for several fundamental contributions to mathematics, 
including his mathematical approach to classical physics and the invention of 
quaternions.  The following is a typical example of a conclusion that followed from the 
methods of these 19th century logicians but not from classical Aristotelian logic: 
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• In a particular group of people,  
o most people have shirts  
o most people have shoes  
o therefore, some people have both shirts and shoes.  

Other contributors during the second half of the 19th century included J. Venn (1834 – 
1923), who devised the pictorial representations of sets that now carry his name, and C. 
L. Dodgson (1832 – 1898), who is better known by his literary pseudonym Lewis Carroll.  
His interests covered a very broad range of topics, and his mathematical achievements 
include some deep studies in symbolic logic and logical reasoning.   Much of this work 
involved specific logical problems of a somewhat whimsical nature, but he also made 
some noteworthy contributions in more general directions, including the use of truth 
tables.  All this activity in logic led to fairly definitive algebraic formulations by W. S. 
Jevons (1835 – 1882) and E. Schröder (1841 – 1902). 

Further discussion of the work of Boole and De Morgan (as well as other topics that are 
mentioned above) appears on pages 643 – 647 of Burton. 

 
Representations of functions by trigonometric series.   Several distinct areas in 
mathematical physics – most notably, wave motion and heat flow – motivated interest in 
expressing periodic functions satisfying  f (x + 2ππππ)   =   f (x)  by means of an infinite 
series of trigonometric functions 

 

 
 

analogous to the power series expansions of the form 
 

 
 

that are so useful for many purposes.  A discussion of such series at the level of first 
year calculus appears in Sections 8.9 and 8.10 of the following classic calculus text: 

 
R. L. Finney, M. D. Weir, F. R. Giordano, Thomas' Calculus, Early 
Transcendentals (Tenth Ed.).   Addison – Wesley, Boston, 2000.  
ISBN: 0–201–44141–1. 

 
During the middle of the 19th century many prominent mathematicians studied aspects of 
the following question: 

 
To what extent is the representation of a function by a (possibly infinite) 
trigonometric series unique? 

 
The founder of set theory, Georg Cantor (1845 – 1918), gave a positive answer to this 
question in 1870. 
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Theorem.  Suppose that we are given two expansions of a reasonable function f as a 
convergent trigonometric series: 
 

 
 

Then  an  =  an′′′′   and   bn  =  bn′′′′  for all nonnegative integers  n.  
 
This is a pretty good conclusion, but one actually would like a little more.  We have not 
specified what we mean by a reasonable function, and indeed we should like to include 
some functions that are not necessarily continuous.  The most basic example in this 
context is the so – called square wave function whose value from 0 to ππππ is + 1 and 
whose value from ππππ to 2ππππ is – 1.  Waves of this type occur naturally in several physical 
contexts:  The graph of the square wave function (with the x – axis rescaled in units of ππππ) 
is given below.   
 

 
 

(SOURCE: http://mathworld.wolfram.com/FourierSeriesSquareWave.html ) 
 
Obviously this function is discontinuous, with a jump in values at every integral multiple 
of ππππ, and one might suspect that it really does not matter how we might define the 
function at such sparsely distributed jump discontinuities.  In fact, this is the case, and 
for every such choice one obtains the same trigonometric series representing the square 
wave function: 
 

 
 

(This is the general expression for period 2 L  , so here L  =  ππππ.) 
 
Here are some graphs to show how close the partial sums come to approximating the 
square wave.  Note that the graphs suggest the value of the infinite sum is zero at 
integral multiples of ππππ (this is in fact true, but we shall not go into the details).  Here is a  
reference for this illustration. 
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http://cnx.rice.edu/content/m0041/latest/ 

 
 

 
 
Clearly we could carry out the same construction for higher frequency square waves 
(using positive integral multiples of 2ππππ) and find examples of reasonable functions with 
the same trigonometric series such that the values of the functions are the same except 
for some arbitrarily large finite set of values between 0 and 2ππππ.  This leads naturally to 
the following problem that Cantor considered in connection with his basic uniqueness 
result: 
 
Do two reasonable functions have the same Fourier series if they agree at all but an 
infinite sequence of points p  n between 0 and 2ππππ?   
 
Cantor showed that the answer was yes if the sequence had the following closure 
property:  If a subsequence p  n(k) converges to a limit L, then L  =  pm for some m. 
 
Subsequent work established the result without the closure hypothesis.  Further 
information on these matters may be found in the following reference (which is definitely  
not written at the advanced undergraduate level – the citation is included for the sake of 
completeness):  

 
A. S. Kechris and A. Louveau, Descriptive set theory and the 
structure of sets of uniqueness (London Math. Soc. Lect. Notes Vol. 
128).  Cambridge University Press, Cambridge, UK, and New York, 
1987.  ISBN: 0–521–35811–6. 
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The important point of all this for our purposes is that Cantor’s analysis of the 
exceptional points led him to abstract set – theoretic concepts and ultimately to his 
extremely original (and at first highly controversial) research on set theory.  Additional 
information on Cantor and his work appears on pages 668 – 690 of Burton.  Further 
developments in the history of set theory are discussed on pages 690 – 707 of Burton, 
but the material covered after the middle of page 701 is not discussed in this course. 
 
 

Some further references 
 
 
Additional historical background on the topics discussed in this section is given in the 
following online sites. 
 

http://math.ucr.edu/~res/math153/history03.pdf 
 
This site discusses some issues related to the logical gaps in Euclid’s Elements and 
why the latter should be still be viewed very positively despite such problems. 

 
http://math.ucr.edu/~res/math153/history12.pdf 

 
http://math.ucr.edu/~res/math153/history14a.pdf 

 
The first document contains an account of infinitesimals which goes beyond the 
Appendix to this section in some respects, and it also includes further discussion on 
problems with the logical soundness of calculus that arose during the period from 1600 
to 1900.  The second document describes one noteworthy example to illustrate how an 
overly casual approach to manipulating infinite series can lead to fallacious conclusions. 
 
 
 
 
 

 
 

I.2. Appendix : Comments on infinitesimals 
 
 

One of the major logical problems with calculus as developed in the 17th century was the 
legitimacy of objects called infinitesimals.  The idea is well illustrated in the method 
employed by B. Cavalieri (1598 – 1647) to study the volume of a solid A that is 
contained between two parallel planes.   If the planes are defined by the equations z  =  
0   and    z  =  1, then for each t between 0 and 1 one has the cross section A t formed by 
Intersecting A with the parallel plane defined by z  =   t.  Cavalieri’s idea is to view A as 
composed of an infinite collection of cylindrical solids whose bases are the cross 
sections A t and whose heights are some very small, in fact infinitesimally small, value 
that we shall call dt.   
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(FIGURE SOURCE:  http://www.mathleague.com/help/geometry/3space.htm ) 

 
From this viewpoint, the total volume is obtained by adding the volumes of these 
infinitesimally short cylindrical solids; in modern terminology, one adds or integrates 
these infinitesimals by taking the definite integral of the area function with respect to t 
from 0 to 1.  Of course, the point of this discussion is to convince the reader that the 
volume of A is given by the following standard integral formula in which a(t)  denotes the 
area of the planar section A  t  :  
 

 
 
 
This is an excellent heuristic argument, but its logical soundness depends upon 
describing the concept of an infinitesimal precisely.  It was clear to 17th and 18th century 
scientists and philosophers that such infinitesimals were supposed to be smaller than 
any finite quantity but were still supposed to be positive.  If one is careless with such a 
notion it is easy to contradict the principle that between any two real numbers there is a 
rational number; a crucial question is whether it is ever possible to be careful enough to 
avoid these or other logical difficulties.  Although proponents of calculus made vigorous 
efforts to explain infinitesimals and were getting reliable answers, their explanations did 
not really clarify the situation much to mathematicians or others of that era.  A clear and 
rigorous foundation for calculus was not achieved until infinitesimals were discarded (for 
foundational purposes) in the 19th century and the subject was based upon the concept 
of limit (see the discussion above).   
 
Despite their doubtful logical status, many users of mathematics have continued to work 
with infinitesimals, probably motivated by their relative simplicity, the fact that they gave 
reliable answers, and an expectation that mathematicians could ultimately find a logical 
justification for whatever was being attempted.  This attitude towards infinitesimals was 
also evident in many undergraduate textbooks in mathematics, science and engineering, 
particularly through the first half of the 20th century; the following is a typical example:  

 
W. A. Granville, P. F. Smith and W. R. Longley, Elements of 
Differential and Integral Calculus (Various editions from 1904 to 
1962).  Wiley, New York, 1962.  ISBN: 0– 471– 00206– 2. 
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During the nineteen sixties Abraham Robinson (1918 – 1974) used extensive machinery 
from set theory and abstract mathematical logic to prove that one can in fact construct a 
number system with infinitesimals that satisfy the expected formal rules.   However, the 
crucial advantage of Robinson’s concept of infinitesimal  —  its logical soundness  —  is 
balanced by the fact that, unlike 17th century infinitesimals, it is neither simple nor 
intuitively easy to understand.  The associated theory of Nonstandard Analysis has 
been studied to a considerable extent mathematically, but it is not widely used in the 
traditional applications of the subject to the sciences and engineering; on the other hand, 
some recent work in mathematical economics has been formulated within the context of 
nonstandard analysis.  The following online references provide further information on 
this subject:  
 
 

http://members.tripod.com/PhilipApps/nonstandard.html 
 

http://www.haverford.edu/math/wdavidon/NonStd.html 
 

http://mathforum.org/dr.math/faq/analysis_hyperreals.html 
 

http://en.wikipedia.org/wiki/Nonstandard_analysis 
 

http://www.math.uiuc.edu/~henson/papers/basics.pdf 
 

 
Here are a few textbook references for nonstandard analysis: 

 
J. M. Henle and E. M. Kleinberg, Infinitesimal Calculus.  Dover 
Publications, New York, 2003.  ISBN: 0– 486– 42886– 9. 
 
J. L. Bell, A Primer of Infinitesimal Analysis.  Cambridge University 
Press, New York, 1998.  ISBN: 0– 521– 62401– 0. 
 
A. E. Hurd and P. A. Loeb, An Introduction to Nonstandard Real 
Analysis (Pure and Applied Mathematics, Vol. 118).  Academic Press, 
Orlando, FL, 1965.  ISBN: 0– 123– 62440– 1. 

 
 

Comment on “differential” notation 
 
 
In older mathematics texts and also some newer books in other subjects, expressions 
like dx, dy and df refer to infinitesimals.  However, in newer mathematics books, for 
example the multivariable calculus text 

 
J. E. Marsden  and A. Tromba, Vector Calculus (Fifth Ed.).  Freeman, 
New York, 2003.  ISBN: 0–716–74992–0 

 
such symbols generally have a much different meaning, and it is important to recognize 
this.  A precise description of the current usage is beyond the scope of this course; one 
general suggestion is to check a textbook carefully if it contains expressions like dx and 
dy standing by themselves and not part of a larger expression for a derivative or an 
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integral.   This applies particularly to any mathematics book beyond first year calculus 
with a first edition date after 1950.  
 
 

Logical rigor and modern mathematical physics 
 
 
The development of nonstandard analysis during the second half of the 20th century is 
definitely not the final step to putting everything related to mathematics on a logically 
sound basis; in fact, one would expect that advances in the other sciences – particularly 
in physics – are likely to continue yielding new ideas on how our mathematical concepts 
might be stretched to deal effectively with new classes of problems.  Probably the most 
important subject currently requiring a mathematically rigorous description is the 
formalism introduced by the renowned physicist R. P. Feynman (1918 – 1988) about 60 
years ago to study questions in quantum electrodynamics.   The value and effectiveness 
of Feynman’s techniques in physics — and even in some highly theoretical areas of 
mathematics — are very widely recognized, but currently there is no general method to 
provide rigorous mathematical justifications for the results predicted by Feynman’s 
machinery (however, it is possible to do so in a wide range of special cases).  A 
comprehensive account of the mathematical aspects of Feynman’s ideas is given in the 
book cited below, and the accompanying online references provide quick surveys of 
Feynman’s life and work:  
 
 

G. W. Johnson and M. L. Lapidus, The Feynman Integral and 
Feynman's Operational Calculus (Oxford Mathematical 
Monographs, Corrected Ed.).  Oxford University Press, Oxford, 
UK, and New York, 2002.  ISBN:  0–19–851572–3. 

 
http://en.wikipedia.org/wiki/Richard_Feynman 

 
http://www.feynman.com/ 

 
http://www2.slac.stanford.edu/vvc/theory/feynman.html 

 
 
 
 

I.3 : Selected problems 
 
 

We shall begin with an online quotation from the site 
 

http://en.wikipedia.org/wiki/Adjoint_functor 
 
on introducing abstract concepts. 
 

Concepts are judged according to their use in solving problems, at 
least as much for their use in building theories. 
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Here is a more focused version of the quotation: 
 

Ideally, an abstract mathematical construction such as set 
theory should answer, or at least shed useful new light, on 
some problem(s) of recognized importance. 

 
Motivated by the preceding comments, we shall list a few mathematical questions of 
varying importance and difficulty as test cases for the usefulness of set theory.   

 
1. Providing a clear and simple mathematical description of both 

relations and functions. 
2. Rigorously justifying the so – called pigeonhole principle :  If 

we are given m objects and n locations to put them with m  >  n, 
then at least one of the locations will contain at least two objects.  

3. Finding a mathematically efficient and logically sound description 
of the real number system. 

4. Understanding the likelihood that a real number which is “chosen 
at random” will be algebraic; i.e., it is the root of a nonconstant 
polynomial equation with integral coefficients. 

 
Given the fundamental importance of the real number system to analysis, it should be 
apparent that anything which will make the latter logically rigorous will play a key 
role in the foundations of mathematics.  
 
At this point a few additional remarks about the desired formulation of the real number 
system seem appropriate.  Even though we view real numbers in terms of their infinite 
decimal expansions, we do not want our mathematical description of real numbers to be 
phrased in such terms.  There are two reasons for this.  One is that verifying algebraic 
identities for infinite decimal expansions is at best awkward; for example, consider the 
practical and theoretical difficulties in writing out the reciprocal to an infinite decimal 
expansion between 0 and 1 or writing out the positive square root of such a number.  A 
second reason is that we would like our concept of real number to be independent of any 
choice of computational base, and in particular we would like a system that does not 
change if we replace base 10 by, say, base 2 (or 8, or 12, or 16, or 60, or … ). 
 
In an appendix to the final section of these notes we shall also consider one further 
question that arises naturally in connection with the points covered in this unit; namely, 
formulating repaired versions of classical Greek deductive geometry in terms of modern 
set theory. 
 


