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I  V   :      Relations and Functions 
 
 

Mathematics and the other mathematical sciences are not merely concerned with listing 
objects.  Analyzing comparisons and changes is also fundamentally important to the 
mathematical sciences and their applications.  Binary and higher order relations are 
simple but important tools for studying mathematical comparisons, and in this section we 
shall describe those aspects of binary relations that are particularly important in 
mathematics.  Two particularly important types of relations are equivalence relations, 
which suggest that related objects are interchangeable for certain purposes, and 
ordering relations, which reflect the frequent need to say that one object in a set should 
come before another.  Another important tool for studying comparison and change is the 
notion of a function, which will also be covered in this unit.    

 
 

I  V   .1 :    Binary relations  
 

 
(Halmos, § 6;  Lipschutz, §§ 3.3 – 3.9, 3.11) 

 
 
We shall only cover those aspects of the theory of binary relations that are needed to 
develop set theory.  In particular, we shall not discuss the various algebraic operations 
and constructions on binary relations that exist and are useful in various practical 
contexts; these include the set – theoretic operations we have introduced more 
generally, but the algebra of binary relations has a considerable amount of additional 
structure.  Much of this is summarized in the last two headings of Section 3.3 in 
Lipschutz and the subsequent material in Sections 3.4 – 3.7 of the same reference.   
 
Many basic problems in computer science require extensive use of relations, and 
accordingly the latter are covered very extensively in discrete mathematics courses like 
Mathematics 11.  Chapter 7 of Rosen contains a lengthy discussion of binary relations 
and n – ary relations for n  >  2, including numerous examples from computer science, 
the algebraic structure mentioned in the previous paragraph, various algebraic and 
graphical representations of relations, and  some computational techniques and 
formulas. 
 
The motivation for the mathematical study of relations is contained in the following 
quotation from page 471 of Rosen: 
 

The most direct way to express a relationship between elements of two 
sets is to use ordered pairs made up of two related elements.  For this 
reason, sets of ordered pairs are called binary relations. 

 
Formally, we proceed as follows:  
 
Definition.  If A and B are two classes, then a binary relation from A to B is a subset R 
of A ×××× B.  We shall often say that x is R – related to y���� or that���� x is in the R – relation to 
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y���� if (x, y)  ∈∈∈∈  R.  Frequently we shall also write x R y to indicate this relation holds for x 
and y in that order. 
 
If A  =  B then a binary relation from A to A is simply called a binary relation on A. 
  
Some binary relations are not particularly interesting.  In particular, both the empty set 
and all of A ×××× B satisfy the condition to be a binary relation, but neither carries any 
information distinguishing one ordered pair (a, b) from another (a′′′′, b′′′′).  A less trivial, but 
still relatively unenlightening, example of a binary operation on an arbitrary class A is 
given by the diagonal relation  ∆∆∆∆ A consisting of all pairs (x, y) such that x  =  y.  When R  

=  ∆∆∆∆ A then x R y simply means that x and y are equal.   
 
In order to motivate the definition, we must construct further examples in which the given 
binary relation reflects something less trivial: 
 
Technical comments on algebraic examples (may be skipped in the naïve approach).  
The examples below involve the standard number systems of mathematics and as such 
are basically algebraic in nature.  Strictly speaking, it is necessary to introduce the 
relevant number systems formally in order to discuss such examples, but this poses no 
obstacles to an informal discussion and ultimately it is possible to justify everything in a 
logically rigorous manner; in particular, there are no surprises in doing so.  
 
Algebraic Example IV.0.1.  Let A be the integers, rational numbers or real numbers, 
and take the binary relation on A consisting of all (x, y) such that x  ≤≤≤≤  y. 
 
Algebraic Example IV.0.2.  Let A be the integers, and take the binary relation on A 
consisting of all pairs (x, y) such that x – y is even.  In this case x and y are related if 
and only if both are even or both are odd.  
 
Algebraic Example IV.0.3.  In this example A will correspond to the squares on a 
chessboard, so that 
 

A  =  { 1, 2, 3, 4, 5, 6, 7, 8 }  ××××  { 1, 2, 3, 4, 5, 6, 7, 8 } 
 
and (x, y) will be related to (x ′′′′, y′′′′) if and only if one of the quantities | x – x ′′′′ | , | y – y ′′′′ | is 
equal to 1 and the other is equal to 2.  In nonmathematical terms this relation 
corresponds to the condition in chess that a knight positioned at square (x, y) is able to 
reach square (x ′′′′, y′′′′) in one move provided the latter is not occupied by a piece of the 
same color. 
 
Algebraic Example IV.0.4.  In this example let A be the set of all polynomials with real 
coefficients, and stipulate that a polynomial f(t) is related to g(t) if there is a third 
polynomial P(x) such that g(t)  =  P( f  ( t  ) ). 
 
A nonalgebraic example IV.0.5.  This is given by the rock – paper – scissors game.  
Let A be the set {  rock, scissors, paper  }, and stipulate that object x is related to object 
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y if object x wins over y under the usual rules of the game (scissors win over paper, 
while paper wins over rock and rock wins over scissors). 
 
 

Abstract properties of binary relations 
 
Certain important types of binary relations can be described by short lists of abstract 
properties.  In this subsection we shall introduce these properties and determine whether 
they are true for various examples. 
 
Definitions.  Let R be a binary relation on a set A. 
 

• R is said to be reflexive if a R a for all a  ∈∈∈∈  A.    
• R is said to be symmetric if a R b implies b R a for all a, b  ∈∈∈∈  A.     
• R is said to be transitive if a R b and b R c imply a R c for all a, b, c  ∈∈∈∈  A.   
• R is said to be antisymmetric if a R b and b R a imply a  =  b for all a, b  ∈∈∈∈  A.     

The following result describes exactly which of these properties hold for each of the four 
examples described above. 

Theorem 1.  The following are true for Algebraic Examples IV.0.1 – IV.0.4:  
 

The  first algebraic example is reflexive, antisymmetric and transitive but not 
symmetric.   
 

The second algebraic example is reflexive, symmetric and transitive but not 
antisymmetric.   
 

The third algebraic example is symmetric but not reflexive, antisymmetric or 
transitive.   
 

The fourth algebraic example is reflexive and transitive but neither symmetric nor 
antisymmetric.  
 

Finally, the nonalgebraic example is not symmetric, reflexive, antisymmetric or 
transitive.  
 
Proof.    We begin with the first example.  The first three of these are just basic 
properties of inequality.  To see that such a relation is not symmetric it suffices to give an 
example of a pair (x, y) such that x  ≤≤≤≤  y but the reverse inequality is false.  The easiest 
way to give an example is to take x  =  0  and y  =  1.   
 

Passing to the second example, it is reflexive because x – x  =  2 ⋅⋅⋅⋅ 0  =  0.  To see that it 

is reflexive, note that x R y  implies y – x  =  2 ⋅⋅⋅⋅ n  implies that  x – y  =  2 ⋅⋅⋅⋅ (– n), which 

gives y R x.  Finally, if  x R y and  y R z, then we have y – x  =  2 ⋅⋅⋅⋅ n  and also  z – y  =  

2 ⋅⋅⋅⋅ m, so that   z – x  =  2 ⋅⋅⋅⋅ (m + n), which means that  x R z.  Finally, to see that the 
relation is not antisymmetric, take y  =  2  and x  =  0.  Then x R y  and  y R x, but clearly 
x and y are not equal. 
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 We now consider the third example.  The relation is not symmetric because if we have 
(x, y) R (x ′′′′, y′′′′) then both the first and second coordinates of (x, y) are unequal to the 
corresponding coordinates for (x′′′′, y′′′′).  The defining condition for the relation remains the 
same if primed and unprimed variables are switched, and this means that the relation is 
symmetric.  We now need to show that the relation is neither antisymmetric nor 
transitive.  To dispose of the first one, consider the R – related pairs p  =  (1, 1) and q  =  
(2, 3).  Then we have p R q and (since the relation is symmetric) q R p, but clearly p 
and q are unequal.  Finally, to show the relation is not transitive, let p and q be as in the 
previous sentences, and take s  =  (3, 5), so that q R s.   Then the absolute values of 
the differences of the coordinates for p and s are 2 and 4, so by the definition of R we 
cannot have p R s.  It might be helpful to get out a chessboard and experiment in order 
to obtain some additional insight into this example and the arguments given in this 
paragraph.  
 
Next, we consider the fourth example.  The relation is reflexive because if we take the 
identity polynomial P(x)  =  x then f(t)  =  P( f(t) ).  Transitivity follows because if Q and P 
and polynomials then Q[ P( f(t) ) ] is again a polynomial in f.  It remains to show the 
relation is neither symmetric nor antisymmetric.  To see the relation is not symmetric 
take f  ( t  )  =  t and P(x)  =  x2.  Then we have g  ( t  )  =  t 2 and the lack of symmetry 
follows because the function t  is not a polynomial in t  

2 ; a justification of this assertion is 
given in the footnote after the proof.  To see that the relation is not antisymmetric, let us 
take P(x)  =  x + 1 and Q(x)  =  x – 1.  Then for all f we have the identity  
 

f(t)  =  Q[ P( f(t) ) ]      where     P(f  ( t  ))   =   f  ( t  ) + 1. 
 

Therefore we know that f(t) is R – related to f  ( t  ) + 1 and vice versa.  However, these 
two functions are never equal and therefore we have shown that f R g and g R f does 
not necessarily mean that f  =  g.  In other words, the relation is not antisymmetric.  
 
Finally, we consider the nonalgebraic example.  In this case the relation contains only 
three ordered pairs, and for each pair the coordinates are unequal.  This shows the 
relation is not symmetric.  It is also not transitive, for direct inspection shows that if x R y 
and y R z then we have z R x and we do not have x R z.  The validity of the symmetric 
property may seem surprising at first, but it turns out to be vacuously true because 
there are NO ordered pairs (x, y) such that x R y and y R x.�  
 
Footnote.  In the course of the preceding argument, we asserted that the polynomial 
g(t)  =  t is not expressible as a polynomial in f  ( t  )  =  t  2.   One way of proving this is to 
use the elementary identity 
 

degree [  P( f  ( t  ) ) ]    =    degree [  f  ( t  ) ] ⋅⋅⋅⋅ degree [  P(x) ]. 
 

If g(t)  =  t were expressible as a polynomial in f  ( t  )  =  t   
2, then this would yield the 

equation 1  =  2 ⋅⋅⋅⋅ degree [  P(x) ], which is impossible because the degree of a nonzero 
polynomial is always a nonnegative integer.   
 
As one might expect, it is also possible to construct other examples for which some 
properties hold and others do not.  In particular, one can find examples that satisfy none 
of the four properties defined above.  
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Algebraic Example IV.0.5.  Let A be the integers, rational numbers or real numbers, 
and take the binary relation on A consisting of all (x, y) such that y  =  x  +  1.  
 
Discussion of this example.  This relation is not reflexive because there are no 
numbers x such that x  =  x  +  1.  It is not symmetric because y  =  x  +  1 implies x  =  
y  –  1 and the right hand side of the second equation is not equal to  y  +  1.  It is also 
not transitive, for y  =  x  +  1 and z  =  y  +  1 imply z  =  x  +  2 and the right hand side 
of the last equation is not equal to  x  +  1.  Finally, the relation is not antisymmetric, for 
there are no numbers x and y such that   y  =  x  +  1 and x  =  y  +  1 (note that the two 
equations combine to imply x  =  x  +  2 and y  =  y  +  2).  
 
 

Equivalence relations 
 
Given a set A, one of the simplest but most important binary relations on A is given by 
equality; specifically, this is the relation EA determined by the diagonal subset of A ×××× A 
consisting of all ordered pairs (a, b) such that a  =  b. 
 
Proposition 2.  For every set A the binary relation EA  is reflexive, symmetric and 
transitive.  
 
This result is merely a restatement of the three fundamental properties of equality; 
namely,  (1) the reflexive property x  =  x,  (2) the symmetric property x  =  y  ⇒   y  =  x,  
and (3) the transitive property x  =  y  &  y  =  z  ⇒   x  =  z.�  
 
Definition.    A binary relation E on a set A is said to be an equivalence relation if it is 
reflexive, symmetric and transitive.  
 

In addition to equality, our previous Algebraic Example IV.0.2 is an equivalence 
relation.  Yet another example may be obtained taking A to be the chessboard (or 
checkerboard?) set  
 

A  =  { 1, 2, 3, 4, 5, 6, 7, 8 }  ××××  { 1, 2, 3, 4, 5, 6, 7, 8 } 
 

and choosing choosing E such that (x, y) is E – related to (x ′′′′, y′′′′) if and only if the sum  
 

( x – x ′′′′ )  +  ( y – y ′′′′ ) 
 

is even.  In everyday terms, the condition on (x, y) and (x ′′′′, y ′′′′) means that the squares 
they represent have the same color.  The verification that E is reflexive, symmetric and 
transitive is parallel to the corresponding argument for Algebraic Example IV.0.2 above, 
and the details are left to the reader as an exercise. 
 
One can also define an equivalence relation C on A by stipulating that (x, y) is C  – 
related to (x ′′′′, y ′′′′) if and only if y  =  y ′′′′.  It is immediate that (x, y) C (x, y) because y  =  y, 
while (x, y) C (x ′′′′, y′′′′) implies y  =  y ′′′′, which further implies y ′′′′  =  y so that (x ′′′′, y′′′′) C (x, y).  
Finally,  (x, y) C (z, w) and (z, w) C (u, v) imply y  =  w  and w  =  v, so that y  =  v and 
therefore  (x, y) C (u, v).  Informally speaking, two elements of A are C  – related if and 
only if the squares they represent are in the same column.   
 



 57 

Definition.  If A is a set,  a  ∈∈∈∈  A, and E is an equivalence relation on A, then the E  – 
equivalence class of a, written [a]  E  or simply [a] if E is clear from the context, is the 

set of all x  ∈∈∈∈  A such that x is E – related to a.  —  If C is an equivalence class for E 

and x ∈∈∈∈ C, then one frequently says that x is a representative for the equivalence class 
C (or something that is grammatically equivalent).  
 
Since equivalence classes for E are subsets of A, we have the following elementary 
observation.  
 
Proposition 3.    If A is a set and E is an equivalence relation on A, then the collection 
of all E – equivalence classes is a set.  
 
Proof.   By construction the collection of all equivalence classes is a subcollection of the 
set P(A).�  
 
As noted in Halmos, the set of all equivalence classes is often denoted by symbolism 
such as A/E, and it is often verbalized as “ A modulo E”  or (more briefly) “ A mod E.”   
Halmos also uses the notation a/E for the equivalence class we (and most writers) 
denote by [a]  E .   

Equivalence classes for previous examples.    In Algebraic Example IV.0.2, the 
equivalence class of an integer a is the set of all even integers if a is even and the set 
of all odd integers if a is odd.  For the equality relation(s), the equivalence class of a is 
the set {  a } consisting only of a.  In the first chessboard example, the equivalence class 
of a square is the set of all squares having the same color as the given one, and in the 
second example the equivalence class of a square is the set of all squares in the same 
column as the given one. 

The equivalence classes of an equivalence relation have the following fundamentally 
important property: 

Theorem 4.   Let A be a set, suppose that x and y belong to A, and let E be an 
equivalence relation on A.  Then either the equivalence classes [x]  E  and  [y]  E  are 
disjoint or else they are equal. 

Proof.  Suppose that the equivalence classes in question are not disjoint, and let z 
belong to both of them.  Then we have x E z and y E z.  By symmetry, the second of 
these implies z E y, and one can combine the latter with x E z and transitivity to 
conclude that x E y. 

Suppose now that w ∈∈∈∈ [y] E  so that  y E w.  By transitivity and the final conclusion of 

the previous paragraph it follows that x E w, so that  w ∈∈∈∈ [x] E  is also true.  Therefore 

we have shown that  [y] E  ⊂⊂⊂⊂  [x] E .    If we reverse the roles of x and y in this argument 

and note that x E y implies y E x, we can also conclude that [y] E  ⊂⊂⊂⊂  [x] E.  Combining 

this with the preceding sentence yields the desired relationship  [y] E  =  [x] E.� 
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Corollary 5.  The equivalence classes of an equivalence relation on A form a family of 
pairwise disjoint subsets whose union is all of A.�   

A converse to the preceding corollary also plays an important role in the study of 
equivalence relations: 

Proposition 6.  Let A be a set, and let C be a family of subsets of A such that (1) the 
subsets in C are pairwise disjoint, (2) the union of the subsets is C is equal to A.  Then 
there is an equivalence relation E on A whose equivalence classes are the sets in the 
family C. 

The family C is said to define a partition of the set A. 

Proof.  We define a binary relation E on A by stipulating that x E y if and only if there is 

some B ∈∈∈∈ C such that x ∈∈∈∈ B and y ∈∈∈∈ B.  Our first objective is to prove that E is an 
equivalence relation.  To see that x E x for all x, let x be arbitrary and use the hypothesis 

that the union of the subsets in C is A to find some set B such that x ∈∈∈∈ B.  We then 

have x ∈∈∈∈ B and x ∈∈∈∈ B, and therefore it follows that x E x.  Suppose now that x E y, so 

that there is some B such that x ∈∈∈∈ B and y ∈∈∈∈ B.  We then also have x ∈∈∈∈ B and y ∈∈∈∈ B, 
and therefore it follows that y E x.  Finally, suppose that  x E y and y E z.   Then by the 

definition of  E there are subsets  B, D ∈∈∈∈ C such that x ∈∈∈∈ B and y ∈∈∈∈ B and also y ∈∈∈∈ D 
and z ∈∈∈∈ D.  It follows that B and D have y in common, and since the family C of subsets 
is pairwise disjoint, it follows that the subsets B and D must be equal.  But this means 

that x ∈∈∈∈ B, y ∈∈∈∈ B and z ∈∈∈∈ B.  Therefore we have y E z, and this completes the proof 
that E is an equivalence relation.     

What is the equivalence class of an element x ∈∈∈∈ A?  Choose B such that x ∈∈∈∈ B; since 
B is the unique subset from the family C that contains x, it follows that x E y if and only 
if y also belongs to B.  Therefore B is the equivalence class of x.  Since x was arbitrary, 
this shows that the equivalence classes of E are just the subsets in the family C.� 

Generating equivalence relations.  Given a binary relation R on a set A, there are 
some situations where one wants to describe an equivalence relation E such that x E y if 
x and y are R – related.  By the definition of a binary relation, this amounts to saying that 
R is contained in E as a subset of A ×××× A.  The following result shows that every binary 
relation R is contained in a unique minimal equivalence relation: 
 
Theorem 7.    Let  A be a set, and let R be a binary relation on A.  Then there is a 

unique minimal equivalence relation E such that R  ⊂⊂⊂⊂  E.  
 

Proof. (∗∗∗∗∗∗∗∗)  Define a new binary relation E so that x E y if and only if there is a finite 
sequence of elements of A 
 

x  =  x1, … , x  n  =  y 
 

such that for each k one (or more) of the following holds: 
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x  k  =  x  k + 1 
 

x  k  R  x  k + 1 
 

x  k + 1  R  x  k 
 

Suppose that F is an equivalence relation that contains R and that x E y.  Then for each 
k it follows that x  k  F  x  k + 1, and therefore by repeated application of transitivity it follows 
that x F y.  Therefore, if E is an equivalence relation it will follow that it is the unique 
minimal equivalence relation containing R.  
 
To prove that E is reflexive, for each x ∈∈∈∈ A it suffices to consider the simple length two 
sequence x, x and notice that the first option then guarantees that x E x.  Suppose now 
that x E y, and take a sequence 
 

x  =  x1, … , x  n  =  y 
 

as before.  If we define a new sequence 
 

y  =  y1, … , y  n  =  x 
 

where y  p  =  x  n + 1 – p  then by the assumption on the original sequence we know that (at 
least) one of   y  p  =  y  p + 1,  y  p + 1  R  y  p,  or   y  p  R  y  p + 1  holds.  Therefore y E x, and 
hence the relation E is symmetric.  Finally, suppose that x E y and y E z.  Then we have 
sequences x  =  x1, … , x  n  =  y   and  y  =  y1, … , y  m  =  z such that consecutive terms 
satisfy one of the three conditions listed above.  Therefore if we define a new sequence 
whose terms w  p are given by x  p  if  p  ≤≤≤≤  n  and by y  p – n + 1  if  p  >  n, it will follow that 
consecutive terms satisfy one of the three conditions we have listed.  This means that E 
is transitive and thus is an equivalence relation.� 
 
Graphical example IV.0.7.   Let X be the real numbers, and consider the binary 
relation x R y if and only if x3 – 27x  =  y3 – 27y  .  It is fairly straightforward to verify that 
this defines an equivalence relation on the real numbers, and the equivalence classes 
consist of all values of x such that x3 – 27x is equal to a specific real number a.  One 
way to visualize the equivalence classes of R is to take the graph of x3 – 27x and look at 
its intersection with a fixed horizontal line of the form y  =  a.  If we sketch of the graph 
for y  =  x3 – 27x as in the picture below, it is apparent that for some choices of a one 
obtains equivalence classes with one point, for exactly two choices of a the equivalence 
classes consist of two points, and for still other choices the equivalence class consists of 
three points.  
 

 

The cases with two points occur when the tangent line to the graph is horizontal, which 
happens when |x|  =  3,  and hence when |a|  =  54.   Thus equivalence classes have 
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exactly one element if |a|  <  54, exactly two elements if  |a|  =  54, exactly three 
elements if  |a|  >  54. 

 
 

I  V   .2 :      Partial and linear orderings 
 

 
(Halmos, § 14;  Lipschutz, §§ 3.10, 7.1 – 7.6) 

 

In many areas of mathematics it is important to compare two objects of the same type 
and determine whether one is larger or smaller than the other.  The real number system 
is one obvious example of this sort, but it is not the only one.  When we consider the 
family of all subsets of a given set, it is often important to know if one subset is contained 
in another.  In both cases the associated ordering by size can be expressed in terms of a 
binary relation, and these relations turn out to be reflexive, antisymmetric and transitive.  
These examples lead to a general concept. 

Definition.  If A is a set, then a partial ordering on A is a binary relation R on A which 
is reflexive, antisymmetric and transitive.  A partially ordered set (or poset) is an 
ordered pair (A, R) consisting of a set A together with a partial ordering R on A. 

If the partial ordering R is clear or unambiguous from the context, we often write x R y in 
a more familiar form like x  ≤≤≤≤  y  or y  ≥≥≥≥  x.  Similarly, if x  ≤≤≤≤  y  but  x  ≠≠≠≠  y  then we often 
write x  <  y  or y  <  x and say either that x  is strictly less than  y or equivalently that y  
is strictly greater than  x.   

Standard example IV.0.8.  The real number system R with the usual meaning of “ <”  
as “ is less than”  clearly satisfies the conditions for a partial ordering. 

Set – theoretic example IV.0.9.    If S is a set, then the set – theoretic inclusion 

relation A  ⊂⊂⊂⊂  B on the power set P(S) is a partial ordering by the results of Unit I  I .  

These are the most basic examples of partial orderings, but there are also many others 
that arise naturally. 

Algebraic Example IV.0.10.  Let A be the positive integers and let R be the relation x 
R y if and only if y is evenly divisible by x (with no remainder; in other words, y  =  x  z for 

some positive integer z).  The relation is reflexive because x  =  x  ⋅⋅⋅⋅ 1.  To see that the 
relation is antisymmetric, suppose that y  =  x  z and x  =  y  w.  Combining these, we 
obtain the equation x  =  x  z w, where x, z and w are all positive integers.  The only way 
one can have an equation of this sort over the positive integers is if z  =  w  =  1.  To see 
that the relation is transitive, suppose that y  =  x  u and z  =  y  v.  Combining these, we 
see that z  =  y  v  u, where y, v and u are all positive integers.  This implies that x R z. 
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Algebraic Example IV.0.11.  Once again, take A to be the chessboard 
(checkerboard?) set 

A  =  { 1, 2, 3, 4, 5, 6, 7, 8 }  ××××  { 1, 2, 3, 4, 5, 6, 7, 8 } 

and start with the standard ordering on the first eight positive integers.  One then has the 
so – called lexicographic or dictionary ordering on A such that  (x, y)  ≤≤≤≤  (x′′′′, y′′′′) if and 
only if either (1)  x  <   x ′′′′  or else (2) x  =  x ′′′′ and y  ≤≤≤≤   y ′′′′.   We shall show this is a partial 
ordering by proving a more general statement. 

Proposition 1.  Suppose that P and Q are partially ordered sets (with orderings denoted 
by ≤≤≤≤ P and ≤≤≤≤ Q), and define a binary relation  ≤≤≤≤   (the lexicographic or dictionary 
ordering) on the product P ×××× Q by (x, y)  ≤≤≤≤  (x ′′′′, y′′′′) if and only if either (1)  x  < P   x ′′′′  or 
else (2) x  =   x ′′′′ and y  ≤≤≤≤ Q   y ′′′′.   Then the relation  ≤≤≤≤  defines a partial ordering on P ×××× Q. 

Proof.  We being by showing it is reflexive.  By Condition (2) we have (x, y)  ≤≤≤≤  (x, y).  
Suppose now that we have both (x, y)  ≤≤≤≤  (x ′′′′, y′′′′) and (x ′′′′, y′′′′)  ≤≤≤≤  (x, y).  Then (1) and (2) 
combine to show that x  ≤≤≤≤ P  x ′′′′ and x ′′′′  ≤≤≤≤ P  x; therefore we must have x  =   x ′′′′.  We can 
now apply (2) to conclude that y  ≤≤≤≤ Q y ′′′′ and y ′′′′  ≤≤≤≤ Q  y, and hence that y  =  y ′′′′.   Thus 
both coordinates of (x, y)  and  (x ′′′′, y′′′′) are equal, and consequently the two ordered pairs 
are equal.  Finally, suppose that we have (x, y)  ≤≤≤≤  (z, w) and also (z, w)  ≤≤≤≤  (u, v).  The 
remaining argument splits into cases; as noted before, by definition of the relation, if two 
ordered pairs (a, b) and (c, d) are related then a  ≤≤≤≤  c.  Case 1:  Suppose we have either 
x  < P  z  or  z  < P  u.  In either case we have x  <  u and therefore by Condition (1) we 
have (x, y)  ≤≤≤≤  (u, v).  Case 2:  Suppose that x  =  z  =  u.  In this case Condition (2) 
implies y  ≤≤≤≤ Q  w and w  ≤≤≤≤ Q v, and by transitivity of ≤≤≤≤  it follows that y  ≤≤≤≤ Q  v.  Combining 
the statements in the last two sentences, we conclude that (x, y)  ≤≤≤≤  (u, v).  This 
completes the proof of transitivity.� 

 

Linear orderings 

One major difference between the ordering of the real numbers and the ordering of a set 
of subsets is that real numbers satisfy the following trichotomy principle: 

For every x and y, exactly one of  x  =  y, x  <  y or y  <  x is true. 

It is easy to construct examples showing this fails for a set of subsets P(A).  Specifically, 
if A  =  { 1, 2 } with x  =  { 1 } and y  = { 2 }, then x and y are distinct but neither is a 
subset of the other.  

We can formalize the given property of real numbers using another definition. 

Definition.  Let (A, R) be a partially ordered set.  Then R is said to be a linear ordering, 
a simple ordering or a total ordering if for every pair of elements x and y in A, we 
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either have x R y or y R x.  —   Since a partial ordering is antisymmetric, both conditions 
hold if and only if x  =  y.  

Here are two simple but useful results on partially ordered sets. 

Proposition 2.  Let (A, R) be a partially ordered set, let B be a subset of A, and let R|B 
be the restricted binary relation on B defined by R ∩∩∩∩ (B ×××× B).  Then R|B is a partial 
ordering on B.  Furthermore, if R is a linear ordering then so is R|B.  

The key observation in the proof is that if x and y belong to B, then x R|B y if and only if 
x R y.  Details of the argument are left to the reader as an exercise.� 

Proposition 3.  Let (A, R) be a partially ordered set, and let R
���

 denote the converse 

relation x R
���

 y if and only if y R x.  Then R
���

 defines a partial ordering on A.  Also, if R 

is a linear ordering then so is R
���

. 

The relation R
���

defines the opposite or reverse partial ordering of R in which the 
roles of   “  ≤≤≤≤ ”   and   “  ≥≥≥≥ ”    are switched.  The verification of this result is also fairly 
elementary and left to the reader as an exercise.� 

Proposition 4.  If A and B are linearly ordered sets, then the product A ×××× B with the 
lexicographic ordering is also linearly ordered.  
 
Proof.    Suppose we are given (a, b) and (a ′′′′, b  ′′′′).  Since A is linearly ordered, exactly 
one of the statements a  <A  a ′′′′, a  =  a ′′′′ or a  >A  a ′′′′ is true. In the first and third cases 
we have (a, b)  <  (a ′′′′, b  ′′′′) and (a, b)  > (a ′′′′, b  ′′′′) respectively. 
 
Suppose now that a  =  a ′′′′ ; since B is linearly ordered,  exactly one of b  < B  b  ′′′′, b  =  b  ′′′′ 
or b  > B  b  ′′′′ is true. In the respective cases we have (a, b)  <  (a ′′′′, b  ′′′′), (a, b)  =  (a ′′′′, b  ′′′′) 
and (a, b)  >  (a ′′′′, b  ′′′′).�    

Partially ordered sets arise in many different mathematical contexts, and this wide range 
of contexts generates a long list of properties that a partially ordered set may or may not 
satisfy.  Several of these are described on pages 54 – 58 of Halmos.  We shall discuss a 
few of these together with some examples for which the properties are true and others 
for which the properties are false. 

Definitions.  An element x in a partially ordered set A has an immediate predecessor 
if there is a maximal y such that y  <  x.  An element x in a partially ordered set A has an 
immediate successor if there is a minimal y such that y  >  x.  

The integers have the property that every element has an immediate predecessor and 
an immediate successor, while the real numbers have the property that no element has 
an immediate predecessor of an immediate successor.  If we remove the subset of all 
real numbers x such that 0  <  |x|  <  1 and 1  <  |x|  <  2, then some elements will have 
immediate predecessors, some will have immediate successors, some will have both, 
and others will have neither.  
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Definition.  A partially ordered set A is finitely bounded from above if for every pair of 
elements x and y in A there is some z  ∈∈∈∈  A such that x, y  ≤≤≤≤  z.  Similarly, a partially 
ordered set A is finitely bounded from below if for every pair of elements x and y there 
is some z  ∈∈∈∈  A such that z   ≤≤≤≤   x, y  . 

Every linearly ordered set is finitely bounded from above and below (take the larger or 
smaller of the two elements).  Furthermore, every power set P(A) is also finitely bounded 
from above and below (given x and y, their union contains both and their intersection is 

contained in both).  If A is a set with more than one element, then the set X  ⊂⊂⊂⊂  P(A) of 
all subsets with exactly one element is neither finitely bounded from above nor finitely 
bounded from below.  

Definition.  A partially ordered set A is a lattice if the following conditions hold: 

(a) For all x, y ∈∈∈∈ A there is a unique minimal z ∈∈∈∈ A such that x, y  ≤≤≤≤  z.   

(b) For all x, y ∈∈∈∈ A there is a unique maximal z ∈∈∈∈ A such that z  ≤≤≤≤  x, y. 

Examples of lattices.  1.  Every linearly ordered set is a lattice, for if x  ≤≤≤≤  y then y is the 
unique minimal z such that x, y  ≤≤≤≤  z and x is the unique maximal z such that z  ≤≤≤≤  x, y ; 
similarly, if y  ≤≤≤≤  x then x is the unique minimal z such that x, y  ≤≤≤≤  z and  y is the unique 
maximal z such that z  ≤≤≤≤  x, y  . 
 
2.   Every power set P(A) is a lattice (with inclusion as the partial ordering).  Given two 
subsets B, C  ⊂⊂⊂⊂  A, the union B  ∪∪∪∪  C   is the unique minimal Z such that B, C  ⊂⊂⊂⊂  Z and 
the intersection B  ∩∩∩∩  C is the unique maximal Z such that Z  ⊂⊂⊂⊂  B, C. 
 
3.   Let VecSub (Rn) denote the set of vector subspaces of Rn

 with inclusion as the 

partial ordering.  Given two subspaces X, Y of Rn
 the linear sum X + Y is the unique 

minimal Z such that X, Y  ⊂⊂⊂⊂  Z and the intersection X  ∩∩∩∩  Y is the unique maximal Z such 
that Z  ⊂⊂⊂⊂  X, Y.  Note that the ordering in this example is the restriction of the ordering in 
the previous one but the unique minimal Z changes.  This reflects the fact that X + Y is 
the unique smallest subspace which contains the subset X  ∪∪∪∪  Y .    
 
On the other hand, if X is a reasonably large finite set then the set C  ⊂⊂⊂⊂   P(X) of all 
subsets not containing exactly two elements is finitely bounded from above and 
below, but it is not a lattice (given two distinct one point subsets, there are several 
subsets containing both of them, but there is no unique minimal set of this type). 
 
The following type of partially (in fact, linearly) ordered set plays an important role in the 
mathematical sciences. 

Definition.  A partially ordered set A is said to be well – ordered if every nonempty 
subset has a minimal element. 

Algebraic Example IV.0.12.  If A denotes the nonnegative integers and one takes the 
usual ordering, then A is well – ordered; we shall say more about this in the next unit. —  
One can also construct other well – ordered sets.  For example, if A denotes the 
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nonnegative integers and B  ∉∉∉∉  A, consider the partial ordering on A ∪∪∪∪ { B }  which 
restricts to the usual ordering on A and has B as a unique maximal element.  Similarly, if 
we take some C such that C  ∉∉∉∉  A ∪∪∪∪  { B }, then we can construct an extended well – 
ordering on the set A  ∪∪∪∪  { B, C }  for which C is the unique maximal element.   
Constructions of this sort played a significant role in Cantor’s work on trigonometric 
series which led him to develop set theory. 

Proposition 5.  Every well – ordered set is linearly ordered. 

Proof.  Let A be the well – ordered set.  If A does not have at least two elements then 
there is nothing to prove, so assume that A does have at least two elements.  Suppose 
that x and y are distinct elements of A, and consider the nonempty subset { x, y }.  By 
the well – ordering assumption we know this set has a least element.  If it is x, then we 
have x  <  y, and if it is y then we have y  <  x.�   

Further topics.   Sections 7.3, 7.4 and 7.10 – 7.11 in Lipschutz contain additional 
material on partial orderings which goes beyond these notes.  Toplcs include additional 
methods for constructing new partial ordering out of old ones, graphical representations 
of partial orderings, additional terminology, and more detailed discussions of a few 
special types of partially ordered sets (for example, lattices).   Some of this material is 
used in a few of the exercises. 

 

I  V.3:      Functions 

 

 

(Halmos, §§ 8 – 10;  Lipschutz, §§ 4.1 – 4.4, 5.6,  5.8) 
 

 

When one thing depends on another, as, for example, the area of a circle depends on 
the radius, or the temperature on the mountain depends on the height, or the underwater 
pressure depends upon the depth, then we say that the first is a “ function”  of the other. 
  
More generally, if the value of a quantity y belongs to B and depends upon the value of 
a quantity x which belongs to A, we can say that the value of y in B is a function of the 
value of x in A.  Taking this one step further, we can say that the function f is a rule 
which associates to each element a  ∈∈∈∈  A some unique element b  ∈∈∈∈  B, and this is 
frequently written symbolically as b  =  f(a). 
 
The concept of a function is absolutely central to the mathematical sciences and to every 
specialized branch of mathematics.  For example, the following two reasons for the 
importance of functions reflect comments at the beginning of the previous section: 
 

1. Functions can be used to describe how a given object is related to 
another one. 

 

2. Functions serve particularly well as abstract mathematical models 
for changes in the real world. 
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In light of the second point, it should not be surprising that mathematicians often use 
dynamic words like mapping, morphism or transformation as synonyms for function. 
 
In fact, it is even possible to develop the foundations of mathematics in a logically 
rigorous manner using functions as the primitive notion rather than sets, but we shall not 
attempt to discuss this alternative approach here (in particular, it requires a higher 
degree of abstraction than is otherwise necessary).  However, here are some references 
for this approach and its background: 
 

http://en.wikipedia.org/wiki/Category_theory 
 

http://plato.stanford.edu/entries/category-theory/ 
 

www.cs.toronto.edu/~sme/presentations/cat101.pdf 
 

http://www.pnas.org/cgi/reprint/52/6/1506.pdf 
 
 

Standard methods of describing functions 
 
Basic mathematics courses in calculus and other subjects give several ways of 
describing functions.  Here are a few standard examples: 
 

1. The use of tables to list the values of functions in terms of their 
dependent variables. 

 

2. The use of formulas to express the values of functions in terms 
of their dependent variables. 

 

3. The use of graphs to visualize the behavior of functions. 
 

Each of these methods is quite old.   A complete discussion of the historical background 
is beyond the scope of these notes, but a few remarks seem worthwhile. 
 
Tables of values.  Although our knowledge of mathematics in the earliest civilizations is 
limited, we do have examples of tables in both Egyptian and Babylonian mathematics 
from well before 1500 B. C. E., and extensive, fairly accurate tables of trigonometric 
functions had been compiled between 1000 and 2000 years ago in several ancient 
civilizations.   
 
Formulas.  The concept of a formula was at least informally understood in ancient 
civilizations in numerous locations throughout the world, and verbally stated functions 
are certainly explicit in classical Greek and Indian mathematics.  In particular, there are 
many verbal (also called rhetorical) formulas in Euclid’s Elements.  Of course, symbolic 
expressions of formulas require some form of mathematical symbolism.  The 
development of the latter took place in an uneven manner over several centuries; in 
Western civilization, Diophantus of Alexandria introduced systematic notational 
abbreviations for basic mathematical concepts during the 3rd century A. D.  Eventually 
such abbreviations and symbolisms were employed to express mathematical formulas, 
but this really did not become very well established in Western mathematics until later in 
the 16th century, particularly in the work of R. Bombelli (1526 – 1572) and F. Viète (1540 
– 1603). 
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Graphs.  The idea of representing a function graphically dates back (at least) to N. 
Oresme (1323 – 1382; pronounced o-REMM), and it is described in the book, Tractatus 
de figuratione potentiarum et mensurarum (“ Latitude of Forms” ), which was written 
either by him or one of his students; this book was extremely influential over the next 
three centuries, and in particular the impact can be seen in the scientific work of Galileo 
(G. Galilei, 1564 – 1642).  In fact, the graphical representation of a function provides one 
motivation for the standard mathematical definition of a function. 
 
 

The formal definition of a function 
 
The use of the word “ function”  to denote the relationship between a dependent and 
independent variable is due to G. W. von Leibniz (1646 – 1716), who introduced the 
term near the end of the 17th century.   Over the next 150 years there was a great deal of 
discussion about exactly how a function should be defined, and during that time the 
standard f  (x) notation, in which the latter expression represents the dependent variable 
and x represents the independent variable,  was introduced by L. Euler (1706 – 1783).  
In the first half of the 19th century P. Lejeune – Dirichlet (1805 – 1859; the last part of the 
name is pronounced də-REESH-lay) and N. Lobachevsky (1792 – 1856) independently 
and almost simultaneously gave the modern definition of function as a fairly arbitrary rule 
assigning a unique value to each choice for the independent variable.  A brief but very 
informative summary of the evolution of the concept of a function appears on pages 73 – 
75 of the following textbook:  
 

Z. Usiskin, A. Peressini, E. A. Marchisotto, and D. Stanley, Mathematics 
for High School Teachers: An Advanced Perspective. Prentice – Hall, 
Upper Saddle River, NJ, 2002. ISBN: 0–130–44941–5. 

 
Formally this association can be done in several ways, but the most common is by 
means of ordered pairs, and we shall also employ this approach.  It follows that, from a 
purely formal viewpoint, 
 

a function is essentially a special type of binary relation. 
 

Definition.   A function is an ordered pair ( (A, B) , ΓΓΓΓ ) where A and B are sets and ΓΓΓΓ is 

a subset of A ×××× B with the following property:  
 

[ !  !  ]  For each a ∈∈∈∈ A there is a unique element b  ∈∈∈∈  B such that (a, b)  ∈∈∈∈  ΓΓΓΓ. 
 

The sets A and B are respectively called the domain and codomain  of  f����,  and ΓΓΓΓ is 
called the graph of  f.   Frequently we write f : A →→→→ B to denote a function with domain 
A and codomain  B, and as usual we write  
 

b = f(a) if and only if the ordered pair (a, b) lies in the graph of  f  . 
 

By [ !  !  ], for every a ∈∈∈∈ A there is a unique b ∈∈∈∈ B such that b  =  f(a). 
 
Frequently a function is simply defined to be the subset ΓΓΓΓ described above, but in our 
definition the source set A (formally, this is the domain of the function) and the target set 
B (formally, this is the codomain of the function) are included explicitly as part of the 
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structure.  The domain is essentially redundant; however, in some mathematical 
contexts if f : A  →→→→  B  is a function and B is a subset of C, then from our perspective it is 
absolutely necessary to distinguish between the function from A to B with graph ΓΓΓΓ and 
the analogous function from A to C whose graph is also equal to ΓΓΓΓ.  One can also take 
this in the reverse direction; if f : A  →→→→  B  is a function such that its graph ΓΓΓΓ lies in A ×××× D 

for some subset D  ⊂⊂⊂⊂  B, then it is often either convenient or even mandatory to view the 
graph as also defining a related function f : A  →→→→  D.   
 
The need to specify codomains is fundamentally important in computer science; for 
example, in computer programs one must often declare whether the values of certain 
functions should be integer variables or real (floating point) variables.  A basic 
mathematical example at a more advanced level is discussed in Chapter 9 of the 
previously mentioned book by Munkres.   
 
Variants of the main definition.  We have defined functions to be total (i.e., it has a 
value for every argument in the domain), following usual mathematical practice. A partial 
function is a function which need not be defined on every member of its domain; 
however, one still insists that for each x  ∈∈∈∈  A there is at most one y  ∈∈∈∈  B such that a 
pair of the form (x, y) lies in the graph.  Some references go even further and talk about 
multiple valued functions such that for a given x there may be more than one y such that 
(x, y) lies in the graph.  However, such objects will not be discussed any further in these 
notes.  All functions considered here will be single valued. 
 
Example.  If A is the set of real numbers, then the function f(x) given by the standard 
formula x  

2 is given formally by ( (A, A), G ) where G denotes the set of all (x, y) in 
the product A ×××× A such that y  =  x  

2.  Similar considerations apply for most of the 
functions that arise in differential and integral calculus. 
 
One disadvantage of our definition is that it does not allow us to define functions whose 
domains or codomains are classes but not necessarily sets.  Such objects are needed at 
certain points in Unit V and in order to accommodate them we shall make the following 
nonstandard definition. 
 
Definition.  If A and B are classes, then a graph (or prefunction) on A ×××× B will be a 

subset of A ×××× B satisfying [ !  !  ]  . 
 

Example(s).  A simple example of a prefunction on the universal class U∗
 of all sets is 

given by the set of all ordered pairs ( S, P(S) ) where S is an arbitrary set. 
 

Here is another nontrivial example of a prefunction on the universal class U∗
 of all sets; it 

is related to some constructions in Section V.3 :  Take ΣΣΣΣ    to be the collection of all 
ordered pairs (x, y) such that x is a set and y  =  x  ∪∪∪∪  {  x  }  (strictly speaking the 
definition of this class requires a slightly stronger version of the Axiom of Specification 
than we have used, so that one can define classes that are not necessarily contained in 
some fixed set; for example, one can use Axiom ZF4 on page 82 of the book by Goldrei 
that was cited at the beginning of these notes) .   
 



 68 

 
Equality of functions 

 
In both the naïve and formal approaches to set theory, one of the first things is to state 
the standard criterion for two sets to be equal.  We shall begin the discussion of this 
section by verifying the standard fundamental criterion for two functions to be equal. 
 
Proposition 1.  Let f : A →→→→ B  and g : A →→→→ B be functions.  Then f  =  g  if and only if 

f(x)  =  g(x)  for every x  ∈∈∈∈  A. 
 
Proof.  If f  =  g then their graphs are equal to the same set, which we shall call G.  By 

definition of a function, for each x  ∈∈∈∈  A there is a unique b ∈∈∈∈  B such that (x, b) ∈∈∈∈ G, 
and it follows that b must be equal to both f(x) and g(x).  Conversely, if f(x)  =  g(x)  for 

every x  ∈∈∈∈  A, then for each we know that the graphs of f and g both contain the 
element (x, b) where b  =  f(x)  =  g(x).  Since for each x the graphs of f and g each 
contain exactly one point whose first coordinate is x, it follows that these graphs are 
equal.  By the definition of a function, this implies f  =  g.� 
 
 

Images and inverse images 
 
Definition.  Let  f : A →→→→ B  be a function, and let C  ⊂⊂⊂⊂  A.  Then the image of C under 
(the mapping) f is the set   
 

f [C]    =    { y  ∈∈∈∈  B  |  y  =  f(x)  for some  x  ∈∈∈∈  A  }. 
 
Similarly, if D  ⊂⊂⊂⊂  B, then the inverse image of D under (the mapping) f is the set 
 

f   – 1 [  D ]    =    { x  ∈∈∈∈  A  |  f(x)   ∈∈∈∈  D  }. 
 

The set f  [A], which is the image of the entire domain under f, is often called the range 
of the function. 
 
Comment on notation.   One often uses parentheses rather than brackets and writes 
images and inverse images as f  (C)  and  f   – 1

 (D) rather than f  [C]  and  f   – 1
 [D].  In most 

cases this should cause no confusion, but there are some exceptional situations where 
problems can arise, most notably if the set Y  =  A or B contains an element  x  such that 

both x  ∈∈∈∈  A  and x  ⊂⊂⊂⊂  A.  Such sets are easy to manufacture; in particular, given a set 
x we can always form A  =  x  ∪∪∪∪  { x }, but in practice the replacement of brackets by 
parentheses is almost never a source of confusion.  We shall consistently use square 
brackets to indicate images and inverse images. 
 
By definition we know that { f  (x) }  =  f  [  { x }  ].  One often also sees abuses of notation 
in which an inverse image of a one point set f   – 1 [  { y }  ] is simply written in the 
abbreviated form f   – 1

 (y).  In such cases it is important to recognize that the latter is a 
subset of the domain and not an element of the latter (in particular, the subset may be 
empty or contain more than one element).    
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Examples.   1. Suppose that A  =  B is the real number system, f  (x)  =  x2  and C is the 
closed interval [2, 3].  Then f  [C] is equal to the closed interval [4, 9], and if C is the 
closed interval [ – 1, 1] then f  [C] is equal to the closed interval [0, 1].  Similarly, if D is 
the closed interval [16, 25] then f   – 1 [D] equals the union of the two intervals [– 5, – 4] 
and [4, 5], while if D is the closed interval [ – 9, 4] then f   – 1 [D] equals the closed 
interval  [ – 2, 2]. 
 
2.  Let f  (x) = 2x, and let E be the interval [a, b]. Then the image f  [E]  =  [2a, 2b] and 
the inverse image f  – 1

 [E] = [½a, ½b]. Note that the range of f, which is the image of the 
entire domain, is just the set of all real numbers. 
  
3.   Let f  (x)  =  x2.  If E = [–1, 2], then f  [E]  =  [0, 4].  Similarly, if either E  =  [–1, 4] or 
E  = [–2, 4], then f  – 1

 [E]  =  [  0, 2].  The two sets have the same inverse image because 
there is no real number x whose square is negative. Note that the range of f, which is 
the image of the entire domain, is just the set of all nonnegative real numbers. 
 
In order to work a change of variables problem in multivariable calculus it is usually 
necessary to find the image or the inverse image of a set under some vector valued 
function of several variables. Examples and exercises of this sort are given in Section 
6.1 of the previously cited book by Marsden and Tromba. 
 
The following basic identities involving images and inverse images are mentioned (and 
in a few cases verified) on pages 38 – 39 of Halmos. 
 
Theorem 2.  If  f : A →→→→ B  is a function, then the image and inverse image constructions 
for f have the following properties: 
 

1. If V is a family of subsets of A, then f [∪∪∪∪ C ∈∈∈∈ V  C]   =   ∪∪∪∪ C ∈∈∈∈ V  f[C]. 
2. If V is a nonempty family of subsets of A, then we have 

f [ ∩∩∩∩ C ∈∈∈∈ V  C ]   ⊂⊂⊂⊂   ∩∩∩∩ C ∈∈∈∈ V  f [C] and the containment is 
proper in some cases. 

3. If C is a subset of A, then  C  ⊂⊂⊂⊂  f   – 1 [ f [C] ].  
4. If W is a family of subsets of B, then we have 

f  – 1 [ ∪∪∪∪ D ∈∈∈∈ W  D ]   =   ∪∪∪∪ D ∈∈∈∈ W  f   – 1 [D]. 
5. If W is a nonempty family of subsets of B, then 

we have f   – 1 [ ∩∩∩∩ D ∈∈∈∈ W  D ]   =   ∩∩∩∩ D ∈∈∈∈ W  f   – 1 [D].  
6. If D is a subset of B, then f [ f   – 1 [D] ]  ⊂⊂⊂⊂  D.  
7. If D is a subset of B, then f   – 1 [B – D]  =  A – f   – 1 [D].  

 
Proof.   Each statement requires separate consideration. 
 

Verification of (1):   Suppose that y  ∈∈∈∈  f [ ∪∪∪∪ C ∈∈∈∈ V  C ].  Then y  =   f(x) for some element 

x  belonging to  ∪∪∪∪ C ∈∈∈∈ V  C, and for the sake of definiteness let us say that x  ∈∈∈∈  C0.   It 

follows that  y  ∈∈∈∈  f [C0 ], and since the latter is contained in ∪∪∪∪ C ∈∈∈∈ V  f[C] it follows that 

the original element y   belongs to  ∪∪∪∪ C ∈∈∈∈ V  f[C].   Conversely, if  y   ∈∈∈∈  ∪∪∪∪ C ∈∈∈∈ V  f[C] and 

we choose  C0 so that  y  ∈∈∈∈  f [C0 ],  then y  =  f(x) for x  ∈∈∈∈  C0  and C0   ⊂⊂⊂⊂  ∪∪∪∪ C ∈∈∈∈ V  C 
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combine to imply that  y  ∈∈∈∈  f  [ ∪∪∪∪ C ∈∈∈∈ V  C ].  Hence the two sets in the statement are 
equal. 
 

Verification of (2):   Suppose that y  ∈∈∈∈  f [ ∩∩∩∩ C ∈∈∈∈ V  C ].  Then y  =  f(x) for some element 

x  belonging to  ∩∩∩∩ C ∈∈∈∈ V C, and therefore y  ∈∈∈∈  f [C] for each C  ∈∈∈∈  V.  But this means 
that y belongs to  ∩∩∩∩ C ∈∈∈∈ V  f[C], and this proves the containment assertion.  To see that 
this containment may be proper, consider the function x2 from the real numbers to 
themselves, and let B and C denote the closed intervals [–1, 0] and [0, 1] respectively.  
Then f[B ∩∩∩∩ C]  =  { 0 } but  f[B]  ∩∩∩∩  f[C]  =  [0, 1].   
 

Verification of (3):   If x ∈∈∈∈  C then f(x} ∈∈∈∈  f[C], and therefore x ∈∈∈∈ f   – 1 [ f [C] ],  proving 
the containment assertion.   
 

Verification of (4):   Suppose that x  ∈∈∈∈  f   – 1 [ ∪∪∪∪ D ∈∈∈∈ W  D ].  By definition we then know 

that f(x)  ∈∈∈∈   ∪∪∪∪ D ∈∈∈∈ W  D, and for the sake of definiteness let us say that f(x)  ∈∈∈∈  D0.  Then 

we have x  ∈∈∈∈  f   – 1 [D0], and since the latter is contained in f   – 1 [ ∪∪∪∪ D ∈∈∈∈ W  D ] we 
conclude that  f   – 1 [ ∪∪∪∪ D ∈∈∈∈ W  D ]   =   ∪∪∪∪ D ∈∈∈∈ W  f   – 1 [D].  Conversely, suppose that we 

have x  ∈∈∈∈  ∪∪∪∪ D ∈∈∈∈ W  f  – 1 [D].  Once again, for the sake of definiteness choose D0 so that 

x  ∈∈∈∈  f   – 1 [D0].  We then have that f(x)  ∈∈∈∈  D0 , where the latter is contained in ∪∪∪∪ D ∈∈∈∈ W  D, 
so that f(x)  must belong to the set  ∪∪∪∪ D ∈∈∈∈ W  D.  This implies that x  ∈∈∈∈  f   – 1 [ ∪∪∪∪ D ∈∈∈∈ W  D ].  
Therefore we have shown that each of the sets under consideration is contained in the 
other and hence they must be equal. 
 

Verification of (5):   Suppose that x  ∈∈∈∈  f   – 1 [ ∩∩∩∩ D ∈∈∈∈ W  D ].   Then  f(x)  =  y  for some 

element y  belonging to  ∩∩∩∩ D ∈∈∈∈ W  D, so that y  ∈∈∈∈  D for each D  ∈∈∈∈  W.   Therefore we 

have x  ∈∈∈∈  f   – 1 [D] for each D  ∈∈∈∈  W,  which means that x  belongs to  ∩∩∩∩ D ∈∈∈∈ W  f  – 1 [D], 

and this proves one containment direction.   Conversely, suppose x  ∈∈∈∈  ∩∩∩∩ D ∈∈∈∈ W  f  – 1 [D].  

Then by definition we know that f(x)  ∈∈∈∈  D for every D ∈∈∈∈  W, so that we must also have 

f(x)  ∈∈∈∈  ∩∩∩∩ D ∈∈∈∈ W  D.   But this means that x  ∈∈∈∈  f  – 1 [ ∩∩∩∩ D ∈∈∈∈ W  D ], proving containment in 
the other direction; it follows that the two sets under consideration must be equal.  
 

Verification of (6):   If y  ∈∈∈∈  f [ f   – 1 [D] ], then y  =  f(x) for some x  ∈∈∈∈  f   – 1 [D], and by 

definition of the latter we know that f(x)  ∈∈∈∈  D; since y  =  f(x) this means that y must 
belong to D, proving the containment assertion.   
 

Verification of (7):   Suppose first that x  ∈∈∈∈  f   – 1 [B – D].  By definition we have f(x)  ∈∈∈∈  

B – D, and in particular it follows that f(x)  ∉∉∉∉  D, so that x  ∉∉∉∉  f   – 1 [D].  The latter in turn 

implies that  x  ∈∈∈∈  A – f   – 1 [D], and thus we have established the containment of f   – 1 [B 

– D] in  A – f   – 1 [D].   Conversely, if x  ∈∈∈∈  A – f   – 1 [D], then x  ∉∉∉∉  f   – 1 [D] implies f(x)  ∉∉∉∉  

D, so that f(x)  ∈∈∈∈  B – D and hence x  ∈∈∈∈  f   – 1 [B – D].  This yields containment in the 
other direction.� 
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Notes.    In the next section, we shall prove that equality holds for parts (3) and (6) if the 
function f satisfies an additional condition (there are separate ones for each part).  
Likewise, there are results for comparing f  [A – C] to B – f  [C] in some cases (see 
Exercise IV.4.7). 
 
 

Some fundamental constructions 
 

This subsection contains two loosely related comments about the use of set theory and 
functions to formalize some fundamental mathematical concepts. 
 
Multivariable functions.  Frequently in mathematics and its applications one 
encounters so – called functions of several variables.  Formally, a function which 
depends upon n independent variables in the sets A1, … , A  n is defined to be a function 
on the n – fold Cartesian product  
 

A1 ×××× … ×××× A  n  
 

or some subset of such a product.  Of course, multivariable calculus provides many 
examples of functions of 2 and 3 variables where each set A i is the real numbers and 
the codomain is also the real numbers. 
 
Binary operations and algebraic systems.   One can also use functions to give a 

formal definition of algebraic operations on a set.  Specifically, if A is a set and ∗ is a 
binary operation on A, then one formalizes this operation mathematically by means of a 
function b : A ×××× A   →→→→  A  .   Given such an operation we usually denote the value b(x, y) 

in the simpler and more familiar form x ∗ y.  In particular, if A is the real numbers then 
addition and multiplication correspond to functions of two variables 
 

αααα : A ×××× A   →→→→  A              µµµµ : A ×××× A    →→→→  A 
 

whose values satisfy appropriate conditions.  
  
Similarly, if we are given a mixed binary operation like scalar multiplication, which sends 
a scalar c and a vector v to the vector c v, we can formalize such an operation as a 

function C ×××× A   →→→→  A.   Likewise, an inner product on a vector space corresponds to a 

function of the form A ×××× A  →→→→  B, where A is the vector space and B denotes the 
associated set of scalars.  One can even go further and discuss binary operations like 
matrix multiplications which send an m ×××× n matrix and an n ×××× p matrix to an m ××××  p 
matrix, and in such cases the binary operations will be mappings A ×××× B    →→→→  C, where 
the three sets A, B and C may all be distinct. 
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I  V.4:      Composite and inverse functions 

 

 

(Halmos, § 10;  Lipschutz, §§ 4.3 – 4.4, 5.7) 
 
 

This section discusses two basic methods of constructing new functions from old ones.  
Both play an important role in calculus. 
 

1. The formation of composites by taking a function of a function.  For example, 
the composite of sin x and 2x + 1 is the function sin (2x + 1), and the 
composite of the functions 1 + x3 and ex is equal to 1 + e3x. 

 

2. In some situations, it is possible to undo the results of a function by taking the 
inverse function.  For example, the cube root function is the inverse of x3, the 
natural logarithm function is the inverse of ex, and arctan x is the inverse to 

tan x if the latter is viewed as a function which is defined on the open interval 
(– ππππ/2, ππππ/2).    

 
 

Identity and composite functions 
 
As noted above, one standard method for constructing new functions out of old ones is 
to compose them.  In particular, if f and g are suitable functions, then one can form the 
composite g( f(x) ) by first applying f to x and then applying g to the resulting value f(x). 
In order for this to be defined the value x must be in the domain of f, and f(x) must be in 
the domain of g.  For example, over the real numbers one cannot form the composite 
function sqr t( (sin x) – 2 ) because the expression inside the  radical sign is always 
negative and in elementary calculus one can only define square roots for nonnegative 
numbers. 
 

Formally, we proceed as follows: 
 
Definition.   If  f : A →→→→ B and g : B →→→→ C are functions, then the composite function  
 

g   f : A →→→→ C  
 

is defined by g   f (x)  =  g( f(x) ).   Frequently one abbreviates g   f to g  f. 
 
Example.  Suppose that f(x)  =  7 x – 4 and g(x)  =  3 x + 2.   Then direct calculation 
shows that g  f (x)  =  21 x – 10. 
 
Graphically one often represents a composite by a so – called commutative diagram, 
the idea being that if one follows the arrows from one object to another, the end result is 
independent of the path taken. 
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During the past half century the use of commutative diagrams has become extremely 
widespread in the mathematical sciences and in some closely related areas (e.g., some 
branches of theoretical physics).  Section 5.6 of Lipschutz contains some further 
discussion of this point. 
  
Composition of functions is associative but not commutative.  We shall establish the first 
by proving a proposition and the second by furnishing an example. 
 
Proposition 1.  Suppose that  f: A  →→→→ B,  g: B   →→→→ C,  and  h: C  →→→→ D  are functions. 
Then we have the associativity identity h  (g  f)  =  (h  g)  f. 
 

Proof.  This follows directly from the definition of functional composition. If x  ∈∈∈∈  A is 
arbitrary, then we have the chain of equations 
  

(h  (g  f))(x)   =   h((g  f)(x))   =   h(g(f(x)))   =   (h  g)(f(x))   =   ((h  g)  f  )(x). 
 

By Proposition 1 it follows that the two composites h   (g  f)  and  (h  g)  f must be 
equal.� 
  
The proof may be illustrated by the following commutative diagram 
 

 
 

in which each of the two triangles ∆∆∆∆    ABC, ∆∆∆∆    BDC commutes; it follows from associativity 
that the parallelogram �        ABDC also commutes. 
 
Failure of commutativity.  One basic reason why composition is not commutative (i.e., 
g   f  ≠≠≠≠  f  g in general) is that the existence of one of the composites g   f  or  f  g does 
not guarantee the existence of the other.  For example, this happens whenever we have 
f: A  →→→→  B and g: B  →→→→  C where A, B and C are all distinct.  In particular, in order to 
define both composites we need to have A  =  C, and if B is not equal to A there is still 
no way that g   f  or  f  g can be equal because they still have different domains and 
codomains.  Thus the only remaining situations in which one can ask whether the 
composites in both orders are equal are those where A  =  B  =  C.  The example below 
shows that commutativity fails even in such a restricted setting.  
 
Examples.  1. Let A  =  B be the real numbers, let f(x)  =  x + 3, and let g(x)  =  x  2.  
Then the composite g   f  (x) is equal to (x + 3) 

2, but the reverse composite f   g  (x) is 
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equal to x  
2 + 3. so that g   f and f   g are completely different functions.  In particular, their 

values for x  =  0 are unequal.  
 
2.  Consider the functions f(x)  =  x + 1 and g(x)  =  x3.  Both f and g are 1 – 1 onto 
functions from the real numbers to themselves, but g   f  (x)  =  x3 + 1 while the composite 
in the other order given by f   g(x) = (x + 1) 

3  =  x3 + 3x2 + 3x + 1. 
 
3.  If we take f(x)  =  sin x and g(x)  =  x2,  then both f and g are functions from the real 

numbers to themselves with g   f(x)  =  sin 2 x and  f   g(x)  =   sin(x2).   Note that the 
first of these has an antiderivative that is easily expressed in terms of elementary 
functions from single value calculus but the second does not; more information on the 
latter topic appears in the document  
 

http://math.ucr.edu/~res/math144/nonelementary_integrals.pdf 
 
in the course directory. 
 
Composition, images and inverse images.  The image and inverse image 
constructions are highly compatible with composition of functions. 
 
Proposition 2.  Suppose that  f: A →→→→  B   and   g: B  →→→→  C are functions, and let M and 
N denote subsets of A and C respectively.  Then we have  
 

g   f [M]   =   g[ f[M] ]        and        (g   f) 
– 1 [N]  =  f  

– 1
 [   g   

– 1 [N] ]. 
 
Proof.  We shall first verify that  g  f [M]   =   g[ f[M] ].   Suppose that z  =  g  f(x) for 

some x ∈∈∈∈ M.  Since  (g  f)(x)   =   g(f(x)) it follows that  we have z  =  g(y) where y =  

f(x) and  x ∈∈∈∈ M.  Therefore y ∈∈∈∈ f[M] and consequently we also have z  ∈∈∈∈  g[ f[M] ].  To 

prove the reverse inclusion, suppose that z ∈∈∈∈  g[ f[M] ], so that z  =  g(y) where y =  f(x) 

and  x ∈∈∈∈ M.  We may then use (g  f)(x)   =   g(f(x)) to conclude that  z  ∈∈∈∈  g  f [M], 
completing the proof of the second inclusion and thus also the proof that the two sets 
under consideration are equal.    
 
We shall next verify that (g  f) – 1 [N]  =  f   – 1 [  g  – 1 [N] ].  Suppose that x belongs to the 
set  (g  f) – 1 [N].  By definition we then have g  f(x)  ∈∈∈∈ N, and since (g  f)(x)   =   g(f(x)) 

it follows that f(x)  ∈∈∈∈ g  – 1 [N].  The latter in turn implies that x  ∈∈∈∈ f   – 1 [  g   – 1 [N] ], and 
this proves containment in one direction.   To prove containment in the other direction, 

suppose that x ∈∈∈∈ f 
  
– 1

 [    g   
– 1 [N] ].  Working backwards, we conclude that f(x) ∈∈∈∈ g   

– 1 [N], 
so that (g  f  )(x)   =   g( f(x) ) ∈∈∈∈ N,  which implies that x  ∈∈∈∈ (g  f) 

– 1
 [N].  This proves 

containment in the other direction and hence that the two sets under consideration are 
equal.� 
 
Definition.   Given a set A, the identity function idA or 1A : A   →→→→ A is the function 
whose graph is the set of all (x, y) such that y  =  x. 
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Identity maps and composition of functions satisfy the following simple but important 
condition. 
 
Proposition 3.   If  f: A →→→→ B is a function, then we have 1B   f  =  f  =  f  1A . 
 
Proof.  Let x  ∈∈∈∈  A be arbitrary.  Then we have 1B  f (x)  =   1B ( f (x) )  =  f (x) and we 
also have f (x)  =   f ( 1A (x))   =   f  1A (x).  We can now apply Proposition IV.3.1 to 
conclude that the three functions 1B    f  ,  f  , and f   1A are equal.� 
 
Inclusion mappings.   If A is a set and C is a subset of A, then the inclusion mapping j: 
C →→→→ A is the function defined by j(x)  =  x; equivalently, the graph is the set of all (x, y) 
in C ×××× A such that x  =  y. 
 
Restrictions to subsets.  Suppose that f: A →→→→ B is a function, and again let C be a 
subset of A.  Then the restriction of f to C is the composite function f     j: C →→→→ B, and it is 
generally denoted by f  |C.  If the graph of f is the set G  ⊂⊂⊂⊂  A ×××× B, then the graph of f  |C is 
the subset G ∩∩∩∩ (C ×××× B).   
  
 

Special types of functions 
 
Defintions.  Let f : A →→→→ B be a function.   

• The function f is one – to – one or 1 – 1 if for all x, y  ∈∈∈∈  A, we have f (x)  = f (y) 
if and only if x  =  y.  Such a map is also said to be injective or an injection or a 
monomorphism or an embedding (sometimes also spelled imbedding). 

• The function f is onto if for each y  ∈∈∈∈  B there is some x  ∈∈∈∈  A such that f (x)  =  
y.  Such a map is also said to be surjective or a surjection or an epimorphism.  

• The function f is 1 – 1 and onto (or 1 – 1 onto or a 1 – 1 correspondence) if it is 
both 1 – 1  and onto.  Such a map is also said to be bijective or a bijection or an 
isomorphism. 

The following observation is a direct consequence of the definitions. 

Proposition 4.  Let f : A →→→→ B be a function.  Then f is surjective if and only if its range is 
equal to its codomain, or equivalently if and only if f [A]  =  B.� 

This follows immediately because the range of f is equal to f [A] by definition. 

Examples of injections.   If A is a set and C is a subset of A, then the previously 
defined inclusion mapping j: C →→→→ A is an injection because j(x)  =  x for all x, so that the 
condition  j(x)  =  j(y) is equivalent to saying that x  =  y.  On the other hand, the 
inclusion j is a surjection if and only if C  =  A. 

Examples of surjections.   Let A and B be sets, and let A ×××× B denote their Cartesian 
product.  The (coordinate) projection mappings  pA : A ×××× B →→→→ A  and pB : A ×××× B →→→→ B 
onto A and B respectively are defined by pA(x, y)  =  x and  pB(x, y)  =  y.  These are 
also called the projections onto the first (A – ) and second (B – )  coordinates.  If both A 
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and B are nonempty, then these mappings are always surjective.  On the other hand, 
the projection pA is injective if and only if B consists of a single point, and likewise the 
projection pB is injective if and only if A consists of a single point. 

Additional examples for injectivity and surjectivity.  Injectivity and surjectivity are 
logically independent properties. The standard way of showing this is to give an example 
of a function that is injective but not surjective and an example that is surjective but not 
injective. For the former, consider the elementary function f : R  →→→→ R defined by f  (x)  =  
arctan x. This is defined for all numbers and is strictly increasing, so it is automatically 
injective, but it is not surjective because its range is the open interval ( – ππππ/2, ππππ/2 ).  An 
example of a function that is surjective but not injective is given by f  (x)  =  x3 – x. The 
function is surjective because for each y one can find a real solution to the cubic 
equation x3 – x  =  y.  However, it is not injective because f (0)  =  f (+1)  =  f (–1)  =  0.� 
  
Note also that the function f (x)  =  x2 is neither injective nor surjective because f (+1)  =  
f (–1) and it is not possible to find a real number x such that x2  =  –1. � 

The following simple factorization principle turns out to be extremely useful for many 
purposes: 

Proposition 5.   Let f : A  →→→→  B be a function.  Then f is equal to a composite j  q, 
where q: A  →→→→  C is surjective and j : C  →→→→  B is injective.   

Proof.   Let C be the image of f, and define q such that the graphs of q and f are equal. 
Take j to be the inclusion of C in B (hence it is injective).   By construction q is surjective, 
and it follows immediately that f(x)  =  j( q(x) ) for all x in A.� 

Note.   The factorization of a function into a surjection followed by an injection is rarely 
unique, but there is a close relationship between any two such factorizations whose 
proof is left to the exercises for this section. 

Complement to Proposition 5.  Suppose we have a function f : A  →→→→  B and two 
factorizations of f as j  0  q  0  and  j1  q1 where the maps q t are surjective and the maps j   t 
are injective for t  =  0, 1.  Denote the codomain of q   t (equivalently, the domain of j   t) by 
C t.  Then there is a unique bijection H: C0  →→→→  C1 such that H q  0  =  q  1 and j1 H  =  j  0. 

A wide range of injective, surjective and bijective functions arise in subjects like calculus, 
discrete mathematics and linear algebra.  The reader is encouraged to look back at 
various basic functions from such courses to determine which if any of these conditions 
are satisfied for such examples. 

Proposition 6. Let f: A →→→→ B and g: B →→→→ C  be functions.  
 

(1)   If f and g are surjections then so is g     f. 
(2)   If f and g are injections then so is g      f. 
(3)   If f and g are bijections, then so is g     f. 

 

Proof.  The third statement follows from the first two, so it suffices to prove these 
assertions.  
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Verification of (1):   Assume f and g are onto.  Let c  ∈∈∈∈  C be arbitrary. Since g is onto 
we can take b ∈∈∈∈ B such that g (b)  =  c.  Since f is onto there is some a  ∈∈∈∈  A such that f 
(a)  =   b. But then g     f (a)  =  g (  f(a)  )  =  g   (b)  =  c. Hence g     f is onto. 
 

Verification of (2):   Assume f and g are 1 – 1.  Take arbitrary elements a1, a2  ∈∈∈∈  A 
and suppose that g     f  (a1)  =  g     f  (a2). Then g(  f  (a1)  )  =  g(  f  (a2)  ) by the definition of the 
composite g     f. Therefore f  (a1)  =  f  (a2) because g is 1 – 1, and since f is 1 – 1  it now 
follows next that a1  =  a2. This shows that g     f is 1 – 1.� 
 
If a function f: A →→→→ B is either 1 – 1 or onto, then one can prove strengthened forms for 
some of the results in Theorem IV.3.2 on images and inverse images of subsets with 
respect to f. 
 
Theorem 7.  If  f : A →→→→ B  is a function, then the image and inverse image constructions 
for f have the following properties: 
 

1. If f is 1 – 1 and C is a subset of A,  then  C  =  f   – 1 [ f [C] ].  
2. If f is onto and D is a subset of B,  then  f [ f   – 1 [D] ]  =  D.  

 
Proof.   As in the proof of Theorem IV.3.2, we treat each statement separately.  
 
Verification of (1):   By Theorem IV.3.2, we already know C is contained in  f   – 1 [ f [C] ].  

Suppose now that f is 1 – 1 and y ∈∈∈∈ f   – 1 [ f [C] ].  By definition we know that f(y)  =  f(x) 

for some x ∈∈∈∈  C.  Since f is 1 – 1 this implies y  =  x, so that we must have x ∈∈∈∈  C.  
Hence the two sets under consideration are equal if f is 1 – 1. 
 
Verification of (2):   By Theorem IV.3.2, we already know f [ f   – 1 [D] ] is contained in D. 

Suppose now that f is onto, and let y ∈∈∈∈ D.  Then there is some x such that y  =  f(x), 
and by definition we know that x must belong to f   – 1

 [D].   Therefore y  =  f(x) must 
belong to f  [ f   

– 1
 [D] ] if f is onto, proving containment in the other direction if f is onto.� 

 

 
Inverse functions 

 
Intuitively, the inverse of a function f: A →→→→ B is a function g: B →→→→ A which undoes the 
action of f; frequently we say that a function is invertible if an inverse exists. It turns out 
that a function is only invertible if it is a bijection. 
 
Definition.   Let f: A →→→→ B be a function. A function g: B →→→→ A which is an inverse of f if 
for all a ∈∈∈∈ A we have g (  f(a)  )  =  a and for all b  ∈∈∈∈  B we have f   (  g(b)  )  =  b. This is 
clearly equivalent to the conditions g   f  =  id  A  and  f     g  = id  B. 
  
Elementary examples.  If A denotes the real numbers, B denotes the positive real 
numbers, and f(x)  =  e 

x, then f has an inverse function g which is the logarithm of x to 
the base e.  Similarly, if A  =  B is the real numbers and f(x)  =  2 x  +  4, then f has an 
inverse g and g(x)  =  ½ x – 2.  Many other examples of this sort arise in trigonometry 
and calculus. 
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Proposition 8.  Let f: A →→→→ B be a bijection, and define f  – 1: B →→→→ A by taking f  – 1

 (b) to 
be the unique a such that f (a)  =  b; equivalently, the graph of f  – 1 is the set of all 
ordered pairs (y, x) such that (x, y) lies in the graph of  f.  Then f  – 1 is well-defined, and it 
is an inverse of f (in fact it is the unique inverse in view of the next proposition). 
 
Proof.  There is at least one a such that f (a)  =  b since f is onto. There cannot be more 
than one since f is 1 – 1. Therefore f  – 1 is well – defined. It clearly satisfies the 
conditions for being an inverse of f.�  
 
Proposition 9.  Let f: A →→→→ B be a function. If f has an inverse g, then f is a bijection and 
the inverse is unique (and it is equal to f  – 1 as defined above). 
 
Proof.  Assume that the mapping f has an inverse g. To show that f is onto, take b ∈∈∈∈ B. 
Then f( g(b) )  =  b, so b lies in the  image of f. To show that f is 1 – 1, consider an 

arbitrary pair of elements a1, a 2  ∈∈∈∈  A.  Suppose that f(a1)  =   f(a 2).  Then g( f(a1) )  =  
g( f(a 2) ), and since g   f  is the identity it follows that a1  =  a 2. To show that the inverse 
is unique, suppose that g and h are both inverses of f.  We must show that g  =  h.  Let 
b  ∈∈∈∈  B be arbitrary.  Then f( g(b) )  =  f( h(b) )  =  b because g and  h both inverses, 
and since f is 1 – 1 we must have g(b)  =  h(b) for all b.  By Proposition 3.1, we have 
shown that g  =  h.� 
  
In view of the preceding proposition, one way of showing that a function is a bijection is 
to show that it has an inverse.  
 
The construction sending a bijective function to its inverse has several basic properties 
that are summarized in the next result. 
 
Proposition 10.   The inverse construction has the following properties: 
 

1. Let A be a set.  Then the identity map  id  A  is a bijection, and it is 
equal to its own inverse. 

2. Suppose that f: A →→→→ B and g: B →→→→ C  are bijections so that their 
composite g   f is also a bijection by a previous result. Then the 
function (g   f) – 1 is equal to f  – 1   g – 1. 

3. If f: A →→→→ B is a bijection with inverse f  – 1, then f  – 1 : B →→→→ A is also 
a bijection, and its inverse is equal to f. 

 

Proof.  We shall derive all of these from the conditions v    u  =  id  X  and  u    v  = id  Y 

which characterize a function u : X →→→→ Y and its inverse v : Y →→→→ X.  If u  =  id  A  then we 
also have v  =  id  A  because id  A    id A   =  id  A, proving the first part.  To prove the 
second part, we take X  =  A,  Y  =  C, and u  =  g    f.  If we set v equal to f – 1

   g  
– 1, then 

Propostion 1 (the associativity property for compositions) and Proposition 3 (on 
composites with identity maps) combine to imply that the composites v     u  and  u     v  
are both identity maps.  Finally, if X  =  B,  Y  =  A, and u  =  f  – 1, then v  =  f has the 
property that the composites  v  u  and  u  v  are both identity maps.�   
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Example.  Here is an illustration of the identity  (g     f) – 1   =   f  
 
– 1

   g  
– 1 using the 

functions f : R →→→→ R 
 defined by f  (x)  =  ex and g : R →→→→ (0, 1) defined by g  (y)  =  y/(1+y) 

as examples for the composite formula for inverse functions:  The composite function g    

f is given by z  =  ex/(1 + ex), and if we solve this for z we obtain the equation x  =  ln (z/ 
(1 – z) ).  Since g – 1

 (z) is equal to the expression inside the parentheses and ln y  =  x 
is the  inverse to y  =  ex, this example does satisfy the formula for finding the inverse 
function of a composite.� 
 

 
The Axiom of Replacement 

 
We have repeatedly noted that sets are supposed to be classes that are “ reasonably 
small.”   Such a viewpoint suggests that if A is a set and B is a class that can be put into 
a 1 – 1 correspondence with A, then B should also be a set.  The following stronger 
axiom confirms this intuitive conclusion: 
 
AXIOM OF REPLACEMENT.  Let P( – , – ) be a two variable predicate statement such 
that for each set x there is a unique set y such that P(x, y) is true.  Then for each set A, 

the collection P[ A , – ] of all y such that P(x, y) for some x ∈∈∈∈ A is a set. 
 
Background information and the reasons for exactly this statement are summarized on 
pages 92 – 102 of the book by Goldrei which is cited at the beginning of the Unit I  of 
these notes. 
 
For our purposes the most important special cases arise when P(x, y) is a statement 

that x ∈∈∈∈ A for some set A and y ∈∈∈∈ B for some set B, and the statement P(x, y) asserts 

that (x, y) lies in some subclass ΓΓΓΓ of A ×××× B.  For such examples the axiom has the 
following implication: 
 
Corollary 11.   Suppose that A is a set, B is a class and  ΓΓΓΓ is a subclass of A ×××× B such 

that for each a ∈∈∈∈ A there is a unique element b ∈∈∈∈ B such that (a, b)  ∈∈∈∈  ΓΓΓΓ.  Then the 

collection of all b ∈∈∈∈ B such that (a, b) ∈∈∈∈ ΓΓΓΓ for some a ∈∈∈∈ A is a set.� 
 
In less formal terms, if we are given a set A and something which looks like a function on 
A, then the class that should be the image of A is also a set.  If we further specialize to 

subclasses  ΓΓΓΓ such that for each b ∈∈∈∈ B there is a unique a ∈∈∈∈ A such that (a, b)  ∈∈∈∈  ΓΓΓΓ, 
then we obtain the conclusions in the first sentence of this subsection; i.e., if we know 
that a class B is in 1 – 1 correspondence with a set A, then B is also a set.   
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I ����V.5:      Constructions involving functions 

 

 

(Halmos, § 8;  Lipschutz, § 5.7) 
 
This section discusses two unrelated points. The first concerns an important relationship 
between equivalence relations and surjective functions, and the second describes some 
basic facts about the collection of all functions from one set to another. 
 
 

Equivalence relations and quotient projections 
 
We have already mentioned that functions are at least as fundamental to mathematics 
as sets and that most if not all of set theory can be reformulated in terms of functions.  
The application of this principle to equivalence relations is particularly important.  Let A 
be a set, let E be an equivalence relation on A, and let A/E be the set of equivalence 
classes for E.  One then has an associated quotient projection  
 

ΠΠΠΠE : A   →→→→  A/E 
 

defined by the formula ΠΠΠΠE (x)  =  [x]  E  (i.e., an element x is sent to its E – equivalence 

class).  By construction the map ΠΠΠΠE  is always onto, and it is 1 – 1 if and only if each 
equivalence class consists of exactly one element (hence the equivalence relation in 
question is just equality). 
 
The discussion of the preceding paragraph shows that an equivalence relation defines a 
function; conversely, the discussion below shows that every function defines an 
equivalence relation. 
 
Definition.   Let f: A →→→→ B be a function.  Define a binary relation F on A such that x F y 
if and only if f(x)  =  f(y).  
 
Proposition 1.  In the setting above, the relation F is an equivalence relation.  
 
Proof.  The condition x F x is a trivial consequence of f(x)  =  f(x).  Given x F y, by 
definition we have f(x)  =  f(y), which is equivalent to f(y)  =  f(x) and thus implies y F x.  
If x F y and y F z, then we have f(x)  =  f(y) and f(y)  =  f(z), so that f(x)  =  f(z) and 
hence x F z.  Therefore F is an equivalence relation. 
 
By construction, the equivalence classes of F are in 1 – 1 correspondence with the 
elements of the image f  [A].� 
 
The following result on functions and equivalence relations is extremely useful in certain 
situations. 
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Theorem 2.    Let f: A →→→→ B be a function, and let E be an equivalence relation on A 
such that f (x)  =  f (y)  whenever x E y.  Then there is a unique function g  : A/E →→→→ B 

such that f  =  g���� ���� ΠΠΠΠ E .�  
 

Proof. (∗∗)   Let w ∈∈∈∈  A/E  and choose x  ∈∈∈∈  A representing the equivalence class w.  
We would like to set g(w) equal to f(x), but in order to do so it is necessary to verify that 
the latter does not depend upon the choice of representative.  Suppose that y also 
represents w, so that x E y.   It then follows from the hypothesis that f (x)  =  f (y) and 
therefore the construction g(w)  =  f(x) does determine a well – defined function from 
A/E  to  B.  Furthermore, by construction we have f  =  g   ΠΠΠΠE .  This proves existence.  

To prove uniqueness, suppose that h is an arbitrary function such that f  =  h   ΠΠΠΠ E .  Let 

w  ∈∈∈∈  A/E  and x ∈∈∈∈ A be arbitrary elements such that x represents w; by Proposition 
3.1 (the criterion for functions to be equal) it suffices to show that g(w)  =  h(w) for every 
w.  By construction we have w  =  ΠΠΠΠ E (x), and therefore by our assumptions and 
construction we have 
 

g(w)  =  g  ���� ΠΠΠΠ E (x)   =   f(x)   =   h  ���� ΠΠΠΠ E (x)  =  h(w) 
 

so that h  =  g; this completes the proof of uniqueness.�  
 
The following result will be useful for the one of the exercises in Section V.1. 
 
Proposition 3.   Let X and Y be sets, let f: X →→→→ Y be a function, let R be a binary 
relation on X, and let E be the equivalence relation generated by R. Suppose that for all 
u, v ∈∈∈∈ X we know that u R v implies f(u)  =  f(v).  Then for all x, y ∈∈∈∈ X such that x E y we 
also have f(x)  =  f(y).  
 
Proof.   Let E(f) be the equivalence relation defined by z E(f) w if and only if f(z) = f(w). 
Then by our assumptions we know that u R v implies u E(f) v, so that E(f) is an 
equivalence relation containing R. However, we also know that E is the unique smallest 

equivalence relation containing R, and therefore we must have E  ⊂⊂⊂⊂  E(f), which means 
that x E y implies x E(f) y. Since the latter is true if and only if f(x)  =  f(y), this proves the 
assertion in the proposition.� 
    
 

Sets of functions 
 
One basic principle running throughout this unit is that reasonable constructions on sets 
within the framework of set theory should yield new examples of sets.  Thus far we have 
done this mainly by means of axioms.  However, we have reached a point where our 
axioms are strong enough to guarantee that still other constructions also yield sets.  The 
following result contains one fundamental example of this type. 
 
Proposition 4.  Suppose that A and B are sets.  Then the collection of all functions from 
A to B is also a set. 
 
Proof.   By definition a function from A to B consists of an ordered pair whose first 
coordinate is (A, B) and whose second coordinate is a subset of A ×××× B.  This means that 
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a function is an element of the set ( { A } ×××× { B } )  ××××  P(A ×××× B).  Since a subclass of a set 
is a set, this proves that the collection of functions is a set.�   
 
Notation.  If A and B are sets, then the set of all functions from A to B is denoted by B  

A.   
 
Sets of functions play an important role in many mathematical contexts.  We shall only 
discuss one of them, after which we shall mention some of their basic formal properties 
without proofs (none of these results will be needed later in the course). 
 
Proposition 5.  If A is a set, then there is a 1 – 1 correspondence from P(A) to the set 
of functions {  0 , 1 }  A. 
 

Remark on terminology.  The existence of this 1 – 1 correspondence is the underlying 
reason why P(A) is often called the power set of A. 
 

Proof.  Let B be a subset of A, and define the indicator function or characteristic 
function J  B : A   →→→→ {  0 , 1 } by J  B  (x)  =  1  if x  ∈∈∈∈  B and J  B (x)  =  0 if x  ∉∉∉∉  B.  Since the 

set of points where J  B (x)  =  1  is equal to B, it follows that J  B   ≠≠≠≠  J  C   if B  ≠≠≠≠  C.  Thus 
the map J : P(A)  →→→→ {  0 , 1 }A is 1 – 1.  To see that the map is onto, let h  : A   →→→→ {  0 , 1 }; 
by construction it follows that h  =  J  D, where D is the set of all points x such that h(x)  =  
1.  Therefore J is a 1 – 1 correspondence.� 
 
We now describe some formal properties of function sets that are sometimes useful. 
 
Proposition 6.  Composition of functions determines a function  
 

ϕϕϕϕ : B  
A

  ××××  C 
B

  →→→→  C 
A 

 

such that ϕϕϕϕ ( f, g)  = g    f. 
 

The final result of this subsection justifies the exponential notation for sets of functions 
by displaying some identities that are formally similar to some basic laws of exponents. 
 

Theorem 7.  (Exponential laws)  If A, B and C are sets,  then there is a 1 – 1  
correspondence between (B ×××× C) A  and B  

A
  ××××  C 

A,  and there is also a 1 – 1 
correspondence between (C 

B) 
A  and C 

B
 
××××

 
A .�  

 
Hints for proving the exponential laws are given in the exercises for this section. 

 

I ����V.6  :      Order types 

 

 

(Halmos, § 18;  Lipschutz, §§ 7.7 – 7.10) 
 

 
We shall conclude this unit with an application of functions to the study of partially 
ordered sets.  The cited section of Halmos begins with material not yet discussed in 
these notes, so we should mention that the relevant material in that reference begins 
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near the bottom of page 71, starting with the paragraph, “ We continue with an important 
part of the theory of order,”  and ending just before the last paragraph on the next page.   
 
In many situations one has two partially ordered sets which have the same basic order-
theoretic structure and differ only by a simple change of variable. For example, the set of 
nonnegative integers N and the set N

  
+
 of positive integers have essentially the same 

order structure, and the transition is given by the linear change of variables y  =  x + 1. 
This defines a bijective map σσσσ 0 from N to N

  
+, and it has the property that x   ≤   x′ if and 

only if σσσσ 0 (x)  ≤  σσσσ 0 (x′).  Similarly, if A and B are the sets of positive integers that divide 
15 and 14 respectively, and each is partially ordered with respect to divisibility, then 
there is a 1 – 1 correspondence f : A →→→→ B such that f  (1)  =  1,  f  (3)  =  2,  f  (5)  =  7, and 
f  (15)  =  14, and one can verify directly that 
 

u divides v in A   if and only if   f  (u) divides f  (v) in B. 
 

More generally, we have the following: 
 
Definition.    Let (A,  ≤  A) and (B,  ≤  B)  be partially ordered sets. We say that A and B 
are similar, or have the same order type, or are order – isomorphic,  if there exists a 
1 – 1 correspondence f : A →→→→ B such that for all u, v  ∈∈∈∈  A we have  u  ≤  A  v if and only 

if f(u)  ≤  B  f(v). 
 
Since f is injective it follows that one has an analog of the property in the last sentence 
for strict inequality: 
 

For all u, v  ∈∈∈∈  A we have u  < A  v if and only if f(u)  < B  f(v). 
 

The bijection f is usually called an order – isomorphism, but sometimes one sees other 
names like similarity or similarity mapping; one important advantage of the terms 
“ order – isomorphic”  and “ order – isomorphism”  is that such usage is consistent 
with standard mathematical usage in most other contexts. 
 
The next result says that the property “ A and B have the same order type”  satisfies the 
conditions for an equivalence relation. 
 
Theorem 1.  Every partially ordered set is order – isomorphic to itself by the identity 
mapping. If there is an order – isomorphism from the partially ordered set B to the 
partially ordered set A, then there is also an order-isomorphism from B to A.  Finally, if 
there are order – isomorphisms from A to B and likewise from B to C, then there is an 
order – isomorphism from A to C. 
 
Sketch of proof.    For the first sentence, one checks that the identity is an order – 
isomorphism. For the second part, one checks that if f : A →→→→ B is an order-isomorphism, 
then so is f  – 1: B →→→→ A.  For the third part, one checks that if f : A →→→→ B and g : B →→→→ C are 
order – isomorphisms, then so is the composite g  f : A →→→→ C. � 
 
Example 1.  The real numbers are order – isomorphic to the positive real numbers by 
the map sending x to ex.  The inverse order – isomorphism from the positive real 
numbers to the real numbers is given by the natural logarithm function. 
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Example 2.  The real numbers are order – isomorphic to the open interval ( –1, 1) by the 

map sending x to x/(1+|x|). 
 

Example 3.   The nonnegative real numbers are order-isomorphic to the half-open 
interval [0, 1) by the restriction of the map in the previous example. 
 
Note that there can be many order – isomorphisms from a partially ordered set to itself 
that are not equal to the identity. For example, on the open interval (0, 1) one has the 
infinite family of distinct maps f  (x)  =  x  

n for all positive integers n.  Similarly, for the 
rational numbers one has the infinite family of distinct order – isomorphisms expressible 
as f  (x)  =  c  x, where c is an arbitrary positive rational number. 
 
The conceptual meaning of order – isomorphism is that if the partially ordered sets A 
and B are order – isomorphic, then A has a given order – theoretic property if and only if 
B does. The following theorem gives several examples.   
 
Theorem 2.  Let A and B be partially ordered sets which have the same order type, and 
let P be one of the properties listed below.  Then A satisfies property P if and only if  B 
does: 
 

(a) The partially ordered set is linearly ordered. 
(b) The partially ordered set is well – ordered. 
(c) The partially ordered set has a maximal element. 
(d) The partially ordered set has a minimal element.  
(e) The partially ordered set has a unique maximal element. 
(f) The partially ordered set has a unique minimal element. 
(g) Some element of the partially ordered set has an 

immediate predecessor. 
(h) Every element of the partially ordered set has an 

immediate predecessor. 
(i) The partially ordered set is finitely bounded from above. 
(j) The partially ordered set is finitely bounded from below. 
(k) The partially ordered set is a lattice. 

 

This list could be continued indefinitely.  One additional example appears after the proof 
below. 
 
Proof.  We shall only do the first of these.  The other cases follow the same pattern and 
the details are left to the reader as exercises. 
 
Suppose that A and B have the same order type and that f : A →→→→ B be an order-
isomorphism,  There are two cases depending upon whether A or B is already known to 
be linearly ordered.  We shall begin with the first case. 
 
We need to prove that the linear ordering property for A implies the linear ordering 
property for B.  Let x and y be distinct elements of B.  Since f is onto we may write x = 
f(u) and y  =  f(v) for some elements u, v in A  ; these must be distinct since they have 
different values under f.  Therefore we either have u  <  v  or v  <  u.   If the first of these 
holds then since f is order preserving we have x  =  f(u)  <  f(v)  =  y, and if the second 
holds then we have the reversed expression y  =  f(v)  <  f(u)  =  x.  Thus either x  <  y  
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or y  <  x, which proves that B is also linearly ordered.   This completes the proof in the 
first case. 
 
On the other hand, if we know that B is linearly ordered, then we can prove A is linearly 
ordered using the preceding argument provided we switch the roles of A and B and 
replace f by its inverse (which is also an order-isomorphism) .� 
 
The preceding theorem is particularly useful for showing that two partially ordered sets 
do not have the same order type.  Here is one more additional property that is 
particularly useful for showing that certain partially ordered sets do not have the same 
order type. 
 
Definition.   An ordered set A has the self – density property if 
 

for each x, y such that x  <  y there is some z such that x  <  z  <  y. 
 

Given two partially ordered sets A and B with the same order type, it follows as above 
that A has the self – density property if and only if B does.� 
 
Here are some additional examples, including some beyond those in Halmos and 
Lipschutz: 
 
Examples.   We claim that each of the linearly ordered sets N,  Z and Q of 

nonnegative integers, (signed) integers, and rational numbers is not order – 
isomorphic to any of the others in the list. The first one has a minimal element while the 
others do not. The third one has the self – density property displayed above while the 
others do not. 
 
Example 4.   The half-open intervals [0, 1) and (0, 1] are not order-isomorphic because 
one has a minimal element but no maximal element and the other has a maximal 
element but no minimal element. 
 
Example 5.   The half open interval [0, 1) is isomorphic to (0, 1]OP (which is  (0, 1] with 

the reverse or opposite ordering), and in fact the map sending t to  1 – t  is an explicit 
order – isomorphism. 
 
Example 6.   To complete the discussion of orderings on standard number systems, we 
claim that the set of real numbers R does not have the order type of N, Z or Q.  For the 
first two of the latter, this is true because R has the self – density property while N and 
Z do not.  Distinguishing R from Q requires a deeper understanding of the properties of 
the real number system.  Specifically, one needs the boxed statement near the top of 
page 174 in Lipschutz; we shall discuss this distinguishing feature in the next unit of the 
notes. 


