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VI :    Infinite constructions in set theory 
 
 

In elementary accounts of set theory, examples of finite collections of objects receive a 
great deal of attention for several reasons.  For example, they provide relatively simple 
illustrations of the abstract formal concepts in the subject.   However, Cantor’s original 
motivation for studying set theory involved infinite collections of objects, and the real 
breakthrough of set theory was its ability to provide a framework for studying infinite 
collections and limits that were previously difficult or out of reach.   
 
We shall begin with a variation on the material in Section I  I  I .3, describing unions and 
intersections of indexed families of sets; a typical example of this sort is a sequence of 
sets An, where n runs through all positive integers.  In the second section we define a 
notion of (possibly infinite) Cartesian product for such indexed families.  This 
definition has some aspects that may seem unmotivated, and therefore we shall also 
describe an axiomatic approach to products such that (i) there is essentially only one set 
– theoretic construction satisfying the axioms (i i) the construction in these notes 
satisfies the axioms.   In the next two sections we shall present Canto’s landmark results 
on comparing infinite sets, including proofs of the following: 
 

1. There is a 1 – 1 correspondence between the nonnegative integers N 
and the integers Z.  

 

2. There is a 1 – 1 correspondence between the nonnegative integers N 
and the rational numbers Q.  

 

3. There is NO 1 – 1 correspondence between the nonnegative integers N 
and the real numbers R.  

 

We should note that a few aspects of Cantor’s discoveries (in particular, the first of the 
displayed statements) had been anticipated by Galileo. 
 
Section 5 is a commentary on the impact of set theory, and Section 6 looks at 
generalizations of finite induction and recursion for sets that are larger than the natural 
numbers N.  The latter is included mainly as background for the sake of completeness. 
 

 
 

VI  .1 :     Indexed families and set – theoretic operations 
 

 
(Halmos, §§ 4, 8 – 9;  Lipschutz, §§ 5.3 – 5.4) 

 
 

One can summarize this section very quickly as follows:  In Unit I  I  I  we introduced 
several ways of constructing a third set out of two given ones, and in this section we 
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shall describe similar ways of constructing a new set out of a more or less arbitrary list of 
other ones. 
 
We have frequently considered finite and infinite sequences of sets having the form A  n 
where the indexing subscript n runs through some finite or infinite set S of nonnegative 
integers.   Formally such a sequence of sets corresponds to a function for which the 
value at a given integer n in S is equal to A  n  .  We can generalize this as follows: 
 
Definition.  Let I  be a set.  An indexed family of sets with indexing set I  is a function 
from I  to some other set X; very often X is the set P(Y) of subsets of some other set Y.  

Such an indexed family is usually described by notation such as { A  i }  i ∈∈∈∈ I  . In such cases 
I  is generally called the index set, while I (i)  =  A  i is the mapping or (Halmos’ 
terminology) family, and A  i is the element belonging to the index value i, which is 
sometimes also called the i  

th element or term of the indexed family. 
 
Given any sort of mathematical objects (e.g., partially ordered sets), one can define an 
indexed family of such objects similarly. 
 
As indicated on page 34 of Halmos, in mathematical writings the notation for an indexed 
family is often abbreviated to {  A  i   }, and this is described by the phrase, “ unacceptable 
but generally accepted way of communicating the notation and indicating the emphasis.”   
A more concise description would be a “slight abuse of language.”  Such an abbreviation 
should only be used if the indexing set it obvious from the context (for example, a 
subscript of n almost always denotes an integer) or its precise nature is relatively 
unimportant and there is no significant danger that the notation will be misinterpreted.   
 

Subfamilies.  An indexed family {  B  i   }  i ∈∈∈∈ J is a subfamily of a family of { A i  }  i ∈∈∈∈ I  , if and 
only if J is a subset of I  and for all i in J we have B  i  =  A  i. 
 
 

Indexed unions and intersections 
 
Given a set C, in Unit I   I   I  we considered the union $(C), which is the collection of all x 

such that x  ∈∈∈∈  A for some  A  ∈∈∈∈  C, and we introduced the usual ways of writing these 

sets as  ∪∪∪∪ {A  |  A  ∈∈∈∈  C } or  ∪∪∪∪ A ∈∈∈∈ C  A.  If we have an indexed family of sets { A i  }  i ∈∈∈∈ I  ,  
then the indexed union 
 

 

will refer to the union of the collection { B |  B  =  A  i for some i ∈∈∈∈ I  }. Recall that here I  is 
a set, and A  i is a set for every i  ∈∈∈∈  I .  In the case that the index set I  is the set of natural 
numbers, one also uses notation is analogous to that of infinite series: 
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Similarly, given a nonempty set C (recall the extra condition is important!), in Unit I  I  I  
we considered the intersection of the sets in C, which is the set of all x such that x  ∈∈∈∈  A 
for every A  ∈∈∈∈  C, and we similarly introduced the analogous ways of writing these sets 

as  ∩∩∩∩ {A  |  A  ∈∈∈∈  C } or  ∩∩∩∩ A  ∈∈∈∈  C  A.  If we have an indexed family of sets { A  i  } i ∈∈∈∈ I  , then 
we also have the corresponding indexed intersection  
 

 
 

As one might expect, this will be the intersection of the collection { B |  B  =  A  i for some 
i ∈∈∈∈ I  }. As before, in the case that the index set I  is the set of natural numbers, one also 
uses notation is analogous to that infinite series: 
  

 
 

These indexed unions and intersections satisfy analogs of the basic formal properties of 
ordinary unions and intersections which are stated formally on pages 35 – 36 of Halmos. 

Numerous properties of unions and intersections of indexed families are developed in 
the exercises 

 
 

VI  .2 :     Infinite Cartesian products 
 

 
(Halmos, § 9;  Lipschutz, §§ 5.4, 9.2) 

 
 

We have already considered n – fold Cartesian products of n sets X1, ... , Xn  : 

X1 × ... × Xn   =   { (x1, ...,xn) | x1 ∈∈∈∈ X1 &  ...  &  xn ∈∈∈∈ Xn } 

At least intuitively, this construction can be identified with (X1 ×  ...  × Xn–1) × Xn.  We 
shall not attempt to make this precise here because one can easily do so using the 
discussion below for general Cartesian products. 

Infinite products.  For the most common mathematical applications, finite products 
suffice. However, for some purposes  —  in particular, many graduate courses in 
mathematics  —  it is necessary to define the general Cartesian product over an arbitrary 
(possibly infinite) collection of sets. Typical examples of this sort arise in the study of 
infinite sequences.   

Definition.  Let I  be an arbitrary index set, and let  {X i | i  ∈∈∈∈  I  } be a collection of sets 
indexed by I .  The general Cartesian product of the indexed family {X i | i  ∈∈∈∈  I  } is 
denoted by symbolism such as  
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ΠΠΠΠ {X i | i  ∈∈∈∈  I  }      or      ΠΠΠΠ i   ∈∈∈∈  I  X i 
 

and is formally specified as follows: 
  

 
 

In other words, the general product is the set of all functions defined on the index set I  
such that the value of the function at a particular index i is an element of Xi.  Since 
functions are determined by their values at the points of their domains, it follows that the 
element f in the general Cartesian product is completely determined by the indexed 
family of elements f(i)  ∈∈∈∈  X i .  In a sense to be made precise later in this section, these 
elements x  i   =  f(i) generalize the coordinates of an ordered pair (x, y) in the usual 
Cartesian product of two sets.  
 
We have already noted that the collection of functions from one set to another is always 
a set, and this yields the corresponding result for general Cartesian products.  
 
Proposition 1.  Let I  be an arbitrary index set, and let {X i | i  ∈∈∈∈  I  } be a family of sets 
indexed by I .  Then the general Cartesian product of the indexed family {X i | i  ∈∈∈∈  I  } is 
also a set.  
 
Proof.   As noted in the paragraph preceding the statement of the proposition, the 
collection of all functions from the set I  to the union X  =  ∪∪∪∪  {X i | i  ∈∈∈∈  I  } is a set.  By 
definition, the general Cartesian product is contained in this set, and therefore it is also a 
set.�   
 
An n – tuple can be viewed as a function on {1, 2, ... , n} that takes its value at i to be 
the i  

th element of the n – tuple. Hence, when I  is {1, 2, ... , n} this definition coincides 
with the definition for the finite case.  
 
One particular and familiar infinite case arises when the index set is the set N of natural 
numbers; this is just the set of all infinite sequences with the i  

th term in its corresponding 
set Xi. An even more specialized case occurs when all the factors Xi involved in the 
product are the same, in which case the construction has an interpretation as “ Cartesian 
exponentiation.”  Then the big union in the definition is just the set itself, and the other 
condition is trivially satisfied, so this is just the set of all functions from I  to X, which is 
the object we have previously called X 

I .  
 
In the ordinary Cartesian product of two sets, an element is completely specified by its 
coordinates, and the same is true for our general definition.  
 
Proposition 2.  Let I  be an arbitrary index set, and let { X i | i  ∈∈∈∈  I  } be a collection of 
sets indexed by I ,  and let x and y be elements of the Cartesian product of the indexed 
family { X i | i  ∈∈∈∈  I  }.  Then x  =  y if and only if x  i   =  y  i  for all i.  
 
This follows immediately from the definition of the elements of the Cartesian product as 
functions defined on the indexing set.� 
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Formal characterizations of large products 
 
For many purposes it is more convenient to look at large Cartesian products in terms of 
their functional behavior rather than their set – theoretic construction.  In effect, this 
amounts to giving an axiomatic characterization of such products; from this viewpoint the 
main point of the previous construction is that it establishes the existence of an object 
which satisfies the axioms.  
 
Definition.  Let { X j } be an indexed family of sets with indexing set J.  An abstract 
direct product of the indexed family  { X j }  is pair (P, { p  j } ), where P is a set and { p  j } 
is an indexed family of functions from p j : P  →→→→  X j such that the following Universal 
Mapping Property holds: 
 

[UMP]  Given an arbitrary set Y and functions f  j : Y  →→→→  X j  for each j, 
there is a unique function f : Y  →→→→  P  such that p  j f   =   f  j for each j.  

  

Footnote.  Such characterizations of mathematical constructions by universal mapping 
properties are fundamental to a topic in the foundations of mathematics known as 
category theory, which was developed by S. Eilenberg (1913 – 1998) and S. MacLane 
(1909 – 2005).  This subject may be described as an abstract study of functions in 
mathematics, and among other things it can be used as alternative to set theory for 
constructing the logical foundations of mathematics (compare the comments at the 
beginning of Section I  V  .3).   We shall not formally discuss the history, motivations and 
applications of category theory in these notes, but we shall give some online references 
for such topics.  The first reference is a general discussion, the next few give some 
information about R. Carnap (1891 – 1970), a philosopher whose term functor was 
adopted to describe a fundamental concept of category theory, and the final reference is 
a summary of the main ideas from a slightly more advanced viewpoint. 

 

http://plato.stanford.edu/entries/category-theory/ 
 

http://www.iep.utm.edu/c/carnap.htm 
 

http://en.wikipedia.org/wiki/Rudolf_Carnap 
 

http://www.rbjones.com/rbjpub/philos/history/rcp000.htm 
 

http://math.ucr.edu/~res/math205A/categories.pdf 
 

Universal mapping properties like [UMP] generally turn out to characterize mathematical 
constructions uniquely up to a suitably defined notion of equivalence.  For our abstract 
definition of direct products, here is a formal statement of the appropriate uniqueness 
result. 
  
Theorem 3. (Uniqueness of Direct Products).   Let { X j } be an indexed family of sets 
with indexing set J, and suppose that (P, { p  j } ) and (Q, { q  j } ) are direct products of the 
indexed family { X j }.  Then there is a unique 1 – 1 correspondence h : Q  →→→→  P such 
that p  j h  =  q  j  for all j. 
  
Proof. (∗∗∗∗∗∗∗∗)   First of all, we claim that a function T : P  →→→→  P is the identity if and only if  
p  j T  =  p j for all j,  and likewise S : Q  →→→→  Q the the identity if and only if q  j S  =  q  j for all 
j.  These are immediate consequences of the Universal Mapping Property, for in the first 
case we have p  j T  =  p j 1X  =  p  j for all j, and in the second we have the corresponding 
equations q  j S  =  q  j 1Y  =  q  j for all j. 
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Since (P, { p  j } ) is a direct product, the Universal Mapping Property implies there is a 
unique function h : Q  →→→→  P such that p  j h  =  q  j  for all j,  and likewise since (Q, { q  j } ) 
is a direct product, there also exists a unique function k : P  →→→→  Q such that q  j k  =  p  j  
for all j.  We claim that h and k are inverse to each other; this is equivalent to the pair of 
identities h k  =  1Q  and k h  =  1P.  
  
To verify these identities, first note that for all j we have  
 

p  j 1X   =   p  j   =   q  j k  =    p  j h k 
 

for all j and similarly 
 

q  j 1Y   =   q  j   =   p  j h  =    q  j k h 
 

for all j.  By the observations in the first paragraph of the proof, it follows that k h  =  1P 
and h k  =  1Q.� 
  
We now need to show that the axiomatic description of direct products is valid for the 
product construction described above.  However, before doing so we verify that the 
ordinary Cartesian product of two sets also satisfies this propery. 
 
Proposition 4.  If A and B are sets and pA and pB denote the standard coordinate 
projections from A × B to A and B respectively, then (A × B;  pA, pB) is a direct product 
in the sense described above. 
 
Proof.  We need to verify the Universal Mapping Property.  Suppose that f : C  →→→→  A and 
g : C  →→→→  B are functions.  Then we may define a function H :  C  →→→→  A × B by the formula 
H(c)   =   ( f(c), g(c) ), and by construction this function satisfies pA H  =  f and pB H  =  g.  
To conclude the proof we need to prove there is a unique function of this type, so 
assume that K : C  →→→→  A × B also satisfies pA K  =  f and pB K  =  g.   Now write K(c)  =  
(a, b), and note that a  =  pA K(c)  =   f(c) and  b  =  pB K(c)  =   g(c).  Thus we have K(c)   
=   ( f(c), g(c) )  =   H(c).   Since c was arbitrary it follows that H  =  K.�   
 
Theorem 5.  Let { X j } be an indexed family of sets with indexing set J, let  
 

ΠΠΠΠ {X j |  j  ∈∈∈∈  J }    =    ΠΠΠΠ j  ∈∈∈∈  J  X j 
 

be the generalized Cartesian product defined above, and for k  ∈∈∈∈  J let 

p  k : ΠΠΠΠ {X j |  j  ∈∈∈∈  J }      →→→→     X k  
 
be the coordinate projection map such that p  k ( f )  =  f(k) for all k.  Then the system 
 

( ΠΠΠΠ j  ∈∈∈∈  J  X j , { p  j } ) 
 

Is a direct product of the indexed family { X j }. 
 
The following “ associativity property”  of the ordinary Cartesian product will be useful in 
the proof of the theorem. 
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Lemma 6.  Let A, B and C be sets.  Then there is a canonical  1 – 1 correspondence T 
from (A × B) × C to A × (B × C) defined by the formula 
 

T( (a, b), c)    =    ( a, (b, c) ) 
 

for all a  ∈∈∈∈  A, b  ∈∈∈∈  B, and c  ∈∈∈∈  C. 
 
Proof of Lemma 6. (∗∗∗∗∗∗∗∗)   The formula for T is given in the lemma; we need to show this 
map is 1 – 1 and onto.  To see that it is 1 – 1, suppose that  
 

T( (a, b), c)    =    T( (x, y), z). 
 

By construction this means that ( a, (b, c) )    =    ( x, (y, z) ).  Since ordered pairs are 
equal if and only if their respective coordinates are equal, it follows that we have a  =  x  
and (b, c)  =  (y, z).  The second equation then implies b  =  y and c  =  z, and from 
these we conclude that ( (a, b), c)    =    ( (x, y), z).  Therefore the mapping T is 1 – 1.  
To see that it is onto, note that every element of the codomain has the form ( a, (b, c) )  
for suitable choices of a, b and c, and by the definition of T each such element belongs 
to the image of T.� 
 
Proof of Theorem 5. (∗∗∗∗∗∗∗∗∗∗∗∗)   All we need to do is verify the Universal Mapping Property.  
Suppose that we are given functions f  j : Y  →→→→  X j  for each j.  
 
For each j let G j denote the subset of all (j, y, x) in { j } × (Y × X j ) such that (y, x) lies in 
the graph of f  j .  Denote the union ∪∪∪∪ j  X j of all the sets X j by X, and let G  ⊂⊂⊂⊂ J × (Y × X ) 
be the union  ∪∪∪∪ j  G j  .  Let G′′′′ ⊂⊂⊂⊂  (J × Y ) × X  denote the image of the set G under the 
associativity map in the lemma. CLAIM:  For each (j, y) there is a unique x such that the 
object ( (j, y), x) belongs to G′′′′.   This follows immediately from the fact that each f  j is a 
function.  
 
Consider now the 1 – 1 correspondence 
 

J × (Y × X )   →→→→   J × (X × Y )   →→→→   (J × X ) × Y  →→→→   Y × (J × X ) 
 
which takes ( (j, y) , x) to ( (y, j) , x).   The middle step of this map is the associativity 
map in the lemma, and the outside steps merely transpose the coordinates in the 

appropriate ordered pairs.  Let G∗
 denote the image of G under this mapping, and for 

each y in Y let Gy
∗

  denote the intersection of G∗ 
 with the set { y } × (J × X ).  By the final 

two sentences of the preceding paragraph, it follows that Gy
∗

  is the graph of a function 
Hy from J to X, and in fact the assumption on  the functions f  j imply that H y is the graph 
of a function such that H y (j) belongs to f  j for each j. The definition of the general 

Cartesian product then implies that H y defines an element of the product ΠΠΠΠ {X j |  j  ∈∈∈∈  J  }.  
By construction we have H y (j)  =  f j ( y  ), and this verifies the projection identities for the 
function we have constructed, proving the existence of a function from Y into the general 
Cartesian product with the required properties. 
 
We now need to prove uniqueness.  Suppose that H and K are functions from Y into the 
product which satisfy the basic projection identities.  The latter imply that H y (j)  =  f  j ( y  ) 
and K  y (j)  =  f  j  ( y  ) for all j and y.  But the latter equations mean that H and K define the 
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same functions from J to X for each y, so that H y  =  K  y  for all y, which in turn implies 
that H  =  K.� 
 
Technical note.  Our definition of function differs from that of Halmos (we are including 
the codomain as part of the structure).  Because of this, the first sentence in the exercise 
on page 37 of Halmos must be modified to as follows in order to match our formulation:  
Instead of saying that the sets in question are equal we need to say that there is a 1 – 1 
correspondence between them.   More precisely, if J is an index set, with {X j |  j  ∈∈∈∈  J } a 
collection of sets indexed by J and for each j ∈∈∈∈  J we are given a subset A  j  of  X j , then 
according to Halmos’ definition we know that 
 

ΠΠΠΠ {A  j |  j  ∈∈∈∈  J }    is a subset of    ΠΠΠΠ {X j |  j  ∈∈∈∈  J } 
 

but in our formulation one only has the following weaker statement, which is completely 
adequate for all practical purposes:  
 
Proposition 7.  In the setting above, let e j denote the inclusion mapping from A  j to X I .  
Then there is a unique canonical 1 – 1 mapping  
 

e : ΠΠΠΠ { A  j |  j  ∈∈∈∈  J }     →→→→    ΠΠΠΠ { X j |  j  ∈∈∈∈  J } 
 

such that for each element a of the domain and each indexing variable j we have the 
coordinate identity e(a) j   =   e j ( a j ) .  
 

This mapping is often denoted by ΠΠΠΠ { e j |  j  ∈∈∈∈  J }  or more simply by ΠΠΠΠ e j . 
 
Using the map e we may naturally identify the domain with the elements of the codomain 
such that for each j, the j  

th coordinate lies in A  j.   
 

Proof. (∗∗∗∗)   Usually the fastest way of proving such a result is to apply the Universal 
Mapping Property, and doing so will also give us an opportunity to illustrate how the 
latter is used in mathematical work.  
 

Let { p  j } denote the family of coordinate projection maps for ΠΠΠΠ { X j |  j  ∈∈∈∈  J }, and 
similarly let { q  j } denote the corresponding coordinate projection maps for the other 

product ΠΠΠΠ { A  j |  j  ∈∈∈∈  J }.  For each indexing variable k, define a mapping   
 

f  k : ΠΠΠΠ { A  j |  j  ∈∈∈∈  J }     →→→→      X k 
 

by setting  f  k  equal to the composite e k q  k . The Universal Mapping Property then 
implies the existence of a unique function  
 

e : ΠΠΠΠ { A  j |  j  ∈∈∈∈  J }     →→→→    ΠΠΠΠ { X j |  j  ∈∈∈∈  J } 
 

such that for each j  ∈∈∈∈  J  we have p  j e  =  e j q  j .  This is equivalent to the condition on 
coordinates, so all that remains is to verify that e is a 1 – 1 mapping.  Since elements of 
a Cartesian product are determined by their coordinates, the latter reduces to showing 
that if e(x)  =  e(y), then for each j  ∈∈∈∈  J we have x  j   =  y  j .   Let J be fixed but arbitrary, 
and consider the following string of equations which follows from e(x)  =  e(y):  
 

e j ( x  j )   =   e(x) j   =   e(y) j   =   e j ( y  j ) 
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Since the inclusion map e j is 1 – 1 by construction, it follows that x  j  =  y  j .  Since j was 
arbitrary, this means that all the corresponding coordinates of x and y are equal and 
consequently that x  =  y, proving that e is also a 1 – 1  mapping.�  
 
 

Applications of the Universal Mapping Property 
 
We shall conclude this section with a few examples illustrating the use of the Universal 
Mapping Property for products to answer some basic questions.  We shall begin with a 
version of the recursive property for finite Cartesian products mentioned at the beginning 
of this section.  
 
Proposition 8.   Let A, B, C be sets. Denote the projections from (A × B) × C to A × B 
and C by p  1, 2 and p  3 respectively, and for i = 1 or 2 let p  i denote the projection of A × B 
to A and B respectively.  Define mappings q  i by q  i  =  p  i p  1, 2 for i = 1 or 2, and q  3 = p  3 . 
Then the system ( (A × B) × C,  { q  1, q  2, q  3} ) satisfies the Universal Mapping Property 
for products. 
 
Proof.  Suppose that f  1 :D →→→→ A, f  2 :D →→→→ B, f  3 :D →→→→ C are functions. By the Universal 
Mapping Property for twofold products there is a unique function f   1, 2 : D →→→→ A × B such 
that p  i f   1, 2  = f  i for i = 1, 2.  Similarly, there is a unique function f :D →→→→ (A × B) × C such 
that p  1, 2 f = f  1, 2 and p  3 f = f  3 .  Since q  3 = p  3 , clearly q  3 f  =  f  3 .   Furthermore, if i = 1, 2 
then q  i f  =  p  i p  1, 2 f   =  p  i f  1, 2   =  f  i , proving the existence part of the Universal 
Mapping Property. 
 
To prove uniqueness, suppose that the projections of h, k : B →→→→ (A × B) × C onto the 
sets A, B, C are equal to the mappings f  i .   We first claim that the projections of h and k 
onto A × B are equal. The projections of h and k onto A × B satisfy q  i  h  =   f  i  =  q  i  k for 
i = 1 or 2, and thus by the Universal Mapping Property for twofold products it follows that 
p  1, 2 h  =  p  1, 2 k.  
 
By assumption we also have q  3 h  =   f  3  =  q  3 k, and hence by the Universal Mapping 
Property for the twofold product (A × B) × C it follows that h  =  k.� 
 
Here is another example, which is also a good illustration of proving that a mapping is 
bijective. 
 
Proposition 9.   Let A, B, C be sets.  
 

(1) There is a unique mapping T from (A × B) × C to (C × A) × B such that T(x, y, z)  
=  (z, x, y)  for all x, y, z.  

(2) The mapping T is bijective, and if A  =  B  =  C the inverse is given by T  T. 
 

Proof.   By the Universal Mapping Property for products there is a unique mapping T 
from (A × B) × C to (C × A) × B such that p  1 T = p  3 , p  2 T = p  1 , and p  3 T = p  2 .   By 
construction, such a map satisfies T(x, y, z)  =  (z, x, y)  for all x, y, z. 
   
We first show that T is injective. If T(x, y, z)  =  T(x', y', z'), then by definition of T we 
have (z, x, y)  =  (z', x', y') and the latter implies x = x', y = y', and z = z'.  Next we prove 
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that T is surjective. To solve the equation T(x, y, z)  =  (u, v, w) we need to find (x, y, z) 
so that (z, x, y)  =  (u, v, w).  Clearly x = v, y = w, z = u gives a solution, so that map is 
surjective as claimed.  
 
If we have A  =  B  =  C then T–1(u, v, w)  =  (x, y, z) implies (z, x, y) = (u, v, w), so that 
T–1(u, v, w)  =  (v, w, u).  But the latter is equal to T(w, u, v) = T  T(u, v, w), and 
therefore T–1  =  T  T as required.� 
 

 
 
 

V  .3 :  Transfinite cardinal numbers 
 

 
(Halmos, §§ 22 – 23;  Lipschutz, §§ 6.1 – 6.3, 6.5) 

 
 
Early in his work on infinite sets, Cantor considered the problem of comparing the 
relative sizes of such sets.  Specifically, given two infinite sets, the goal is to determine if 
one has the same size as the other or if there are different orders of infinity such that 
one set is of a lower order than the other.  Many of Cantor’s results were entirely 
unanticipated, and ultimately his findings led mathematicians to make major changes to 
their perspectives on infinite objects.  In several respects the material in this section is 
the central part of these notes.  
 
Definition.   If A and B are sets, we write |A|  =  |B|, and say that the cardinality of A is 
equal to the cardinality of B (or they have the same cardinality, etc.) if there is a 1 – 1 
onto mapping f : A  →→→→  B .  
 
The relationship |A|  =  |B| is clearly reflexive because the identity on A is a 1 – 1 onto 
map from A to itself, and if  |A|  =  |B|, then |B|  =  |A| is also true because the inverse of 
f is a 1 – 1 onto mapping from B to A.  Finally, if |A|  =  |B| and |B|  =  |C|, then we also 
have |A|  =  |C|, for if we have 1 – 1 onto mappings f : A  →→→→  B  and g : B  →→→→  C , then 
the composite g  f is a 1 – 1 onto mapping from A to C.  In particular, if X is a set and we 
define a binary relation of “ having the same cardinality”  on P(X) to mean that |A|  =  |B|, 
then having the same cardinality defines an equivalence relation on P(X).  In such a 
setting, the cardinal number of a subset A may be interpreted as the equivalence class 
of all sets B which have the same cardinality as A.  This relation is actually independent 
of the choice of set X containing A and B, for if Y contains X then A and B determine the 
same equivalence class in P(X) if and only if they determine the same equivalence class 
in P(Y). 
 
The restriction to subsets of a given set is awkward, but some restrictive condition is 
needed and we have chosen one that is relatively simple to state.  Initially, many 
mathematicians and logicians including Cantor, B. Russell and G. Frege (1848 – 1925), 
attempted to define the cardinal number of a set X as the equivalence class of all sets Y 
that can be put into a 1 – 1 correspondence with X, but a definition of this type cannot 
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be made logically rigorous because of the family of all such objects is “too large” to be a 
set. 
 
 
 
 

Finite and infinite sets 
 
For finite sets, the notion of cardinality has been understood for thousands of years.   
 
Definition.  If n is a positive integer, then a nonempty set X has cardinal number equal 
to n if there is a 1 – 1 correspondence between X and { 0, ... , n – 1 }.   By the results of 
Section V.3, it follows that there is at most one n such that a set has cardinal number 
equal to n.   The definition is extended to nonnegative integers by taking the cardinality 
of the empty set to be 0.  We say that a set X is finite if it has cardinal number equal to 
n for some n and that X is infinite otherwise. 
 
Cantor’s important  —  and in fact revolutionary  —  insight was that one can define 
transfinite cardinal numbers to measure the relative sizes of infinite sets.  
 
 

Partial ordering of cardinalities 
 

Definition.   If A and B are sets, we write |A|  ≤≤≤≤  |B|, and say that the cardinality of A is 
less than or equal to the cardinality of B if there is a 1 – 1 map from A to B. 
   
The notation suggests that this relationship should behave like a partial ordering (in 
analogy with finite sets we would like it to be a linear ordering, but reasons for being 
more modest in the infinite case will be discussed later).  It follows immediately that the 
relation we have defined is reflexive (take the identity map on a set A) and transitive 
(given 1 – 1 maps f : A ����→→→→  B and g : B ����→→→→  C, the composite g  f is also 1 – 1), but the 
proof that it is antisymmetric is decidedly nontrivial: 
  
Theorem 1. (Schröder – Bernstein Theorem.)  If A and B are sets such that there are 
1 – 1 maps A  →→→→  B and B  →→→→  A, then |A|  =  |B|. 
  
Proof. (∗∗∗∗∗∗∗∗)   We shall give the classic argument from the (third edition of the) book by G. 
[= Garrett] Birkhoff (1911 – 1996) and S. MacLane (1909 – 2005) cited below; the 
precise reference is page 340. 
 

G. Birkhoff and S. MacLane, A Survey of Modern Algebra. (Reprint of 
the Third 1968 Edition).  Chelsea Publishing, New York, NY, 1988.  ISBN: 
0 – 023 – 74310 – 7. 

 
Let f : A  →→→→  B and g : B  →→→→  A be 1 – 1 mappings which exist by the assumptions.  

Each a  ∈∈∈∈  A is the image of at most one parent element b  ∈∈∈∈  B; in turn, the latter (if it 
exists) has at most one parent element in A, and so on.  The idea is to trace back the 
ancestry of each element as far as possible.  For each point in A or B there are exactly 
three possibilities:  
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1. The ancestral chain may go back forever.  
2. The ancestral chain may end in A.  
3. The ancestral chain may end in B. 

 
We can then split A and B into three pairwise disjoint pieces corresponding to these 
cases, and we shall call the pieces A1, A2, A3 and B1, B2, B3 (where the possibilities are 
ordered as in the list). 
  
The map f defines a 1 – 1 correspondence between A1 and B1 (and likewise for g).  
Furthermore, g defines a 1 – 1 correspondence from B2 to A2, and f defines a 1 – 1 
correspondence from A3 to B3.  If we combine these 1 – 1 correspondences A1 ����↔↔↔↔  B1, 
A2 ����↔↔↔↔  B2, and A3 ����↔↔↔↔  B3, we get a 1 – 1 correspondence between all of A and all of 
B.� 
 
Here is an immediate consequence of the Schröder – Bernstein Theorem: 
 
Proposition 2.  If A is an infinite subset of the nonnegative integers N, then |A|  =  |N|. 
 
Proof.  (∗∗∗∗)   We shall define a 1 – 1 mapping from N to A recursively; the existence of 
such a map will imply |A|  ≤≤≤≤  |N|; by hypothesis we have the reverse inequality |N|  ≤≤≤≤  
|A|, and therefore the Schröder – Bernstein Theorem implies that |A|  =  |N|. 
 
Since N is well – ordered, it follows that every nonempty subset of A has a least 
element.  Define f recursively by setting f(0) equal to the least element of A, and if we 
are given a partial 1 – 1 function gn: {  0, … , n – 1 }  →→→→        A, extend the definition to the 
set {  0, … , n  }  by noting that the image of gn is a proper subset of A (which is infinite) 
and taking g  n + 1 (n) to be the first element in A – Image (gn).  The increasing union of 
these functions will be the required function from N to A.  It is 1 – 1 because it is 1 – 1 
on each subset {  0, … , n – 1 }; if f(x)  =  f(y), then there is some n such that x and y 
both belong to {  0, … , n – 1 }, and therefore it follows that x and y must be equal.� 
 
Definition.  A set is countable if it is in 1 – 1 correspondence with a subset of the 
natural numbers, and it is denumerable if it is in 1 – 1 correspondence with the natural 
numbers.  However, many writers also use countable as a synonym for denumerable, so 
one must be careful.  Frequently one also sees the phrase “ countably infinite”  
employed as a synonym for denumerable. 
 
Following Cantor, it is customary to denote the cardinal number of the natural numbers 
by ℵℵℵℵ0 (verbalized as aleph – null). 
 
The next result generalizes a simple fact about cardinal numbers from finite sets to 
countable sets. 
 
Proposition 3.  Suppose that A is a nonempty countable set and there is a surjective 
mapping f from A to B.  Then B is also countable, and in fact  |B|  ≤≤≤≤  |A| . 
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Proof.    By hypothesis there is a 1 – 1 correspondence between A and a subset of the 
nonnegative integers N, and thus one can use the standard ordering of the latter to 
make A into a well – ordered set.  Define a function h : B  →→→→  A  as follows; given a 
typical b  ∈∈∈∈  B, take h(b) to be the least element in the inverse image f  – 1 [ { b  } ].  Then 
by definition we have f  h(b)  =  b.  The result will follow from the previous proposition if 
we can show that h is a 1 – 1 mapping, and the latter holds because h(x)  =  h(y) 
implies x  =  f h(x)  =  f h(y) =  y.� 

 
 
 

VI  .3 :      Countable and uncountable sets 
 

 
(Halmos, §§ 23 – 23;  Lipschutz, §§ 6.3 – 6.7) 

 
 
A theory of transfinite cardinal numbers might not be particularly useful if all infinite sets 
had the same cardinality.  In the first paragraphs of this unit we indicated that the 
cardinalities of R and N are different, and the goal of this section is to prove this result.  
The first step in this process is to extend some basic arithmetic operations on N to 
arbitrary transfinite cardinal numbers. 
 
 

Binary operations on cardinal numbers 
 
One can perform a limited number of arithmetic operations with cardinal numbers, but it 
is necessary to realize that these do not enjoy all the familiar properties of the 
corresponding operations on positive integers.  Before doing so, it is convenient to 
introduce a set – theoretic construction which associates to two sets A and B a third set 
which is a union of disjoint isomorphic copies of A and B.  Formally, the disjoint sum (or 
disjoint union) is defined to be the set 
 

A  | |  B   =   A ×××× {1}  ∪∪∪∪  B ×××× {2} 
 

and the standard injection mappings  iA : A   →→→→   A  | |���� B  and  iB : B   →→→→   A  | |  B  are 
defined by  
 

iA (a)  =  (a, 1)      and       iB (b)  =  (b, 2) 
 

respectively.  By construction, we have the following elementary consequences of the 
definition: 
 
Proposition 1.   Suppose that we are given the setting and constructions described 
above. 
 

(1)  The maps iA and iB   determine 1 – 1 correspondences jA from A  to  iA (A) 
and jB from B  to  iB (B). 

 

(2)  The images of A and B are disjoint. 
 

(3)  The union of the images of A and B is all of A  | |���� B . 
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The proof of this result is fairly simple, but we shall include it for the sake of 
completeness and because it is not necessarily easy to locate in the literature. 
 
Proof of (1).  The sets iA (A) and iB (B) are equal to A ×××× {1}  and  B ×××× {2} respectively, 
and we have jA (a)  =  (a, 1) and jB (b)  =  (b, 2).  It follows that inverse maps are given 
by projection onto A and B respectively.� 
 
Proof of (2).  The first coordinate of an element in the image of iA is equal to 1, and the 
first coordinate of an element in the image of iB is equal to 2.  Therefore points in the 
image of one map cannot lie in the image of the other.�  
 
Proof of (3).  Clearly the union is contained in A  | |���� B .  Conversely, if we are given a 
point in the latter, then either it has the form (a, 1)  =  iA (a)  or (b, 2)  =  iB (b).�   
 
Definition. (Addition of cardinal numbers).  If A and B are sets with cardinal numbers 
|A| and |B| respectively, then the sum |A| + |B| is equal to | A  | |���� B  |. 
 
Definition. (Multiplication of cardinal numbers).  If A and B are sets with cardinal 

numbers |A| and |B| respectively, then the product |A| ×××× |B| or equivalently |A| ⋅⋅⋅⋅ |B| (or 

sometimes even  |A| |B|) is equal to | A ×××× B  |. 
 
Definition. (Exponentiation of cardinal numbers).  If A and B are sets with cardinal 
numbers |A| and |B| respectively, then the power operation |A| 

|B| is  |A  
B|, where A  

B 

denotes the set of functions from B to A (as in Unit I  V). 
 
In order to justify these definitions we need to verify two things; namely, that [ i ] these 
definitions agree with the counting results Section V.3 if A and B are finite sets, and also 
[ i i ] that the construction is well – defined; we have defined the operations by choosing 
specific sets A and B with given cardinal numbers, and we need to make sure that if 
choose another pair of sets, say C and D, then we obtain the same cardinal numbers.  
The first point is easy to check; if A and B are finite sets, then the formulas in Section 
V.3 show that the numbers of elements in A  | |���� B  ,  A ×××× B  ,  and A  

B are respectively 

equal to |A| + |B| ,  |A| ⋅⋅⋅⋅ |B|  and  |A  B| .  The following elementary result disposes of the 
second issue. 
 
Proposition 2.  Suppose that we are given sets A, B, C, D and we also have 1 – 1 
correspondences f : A  →→→→  C and  g : B  →→→→  D.   Then there are 1 – 1 correspondences 
from A  | |���� B  ,  A ×××× B  ,  and A  B to C  | |���� D ,  C ×××× D ,  and C D respectively. 
 
Proof.  Define mappings 
 

H : A  | |���� B   →→→→    C  | |���� D ,    J : A ×××× B  →→→→  C ×××× D ,    K : A  
B  →→→→  C 

D 
 

by the following formulas: 
 

H(a, 1)    =    ( f(a), 1 ) ,     H(b, 2)  =  ( g(b), 2 ) 
 

J(a, b)    =   ( f(a), g(b) ) 
 

[ K(ϕϕϕϕ) ] (c)  =  f ϕϕϕϕ g  – 1 (c) 
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Define mappings in the opposite direction(s) 
 

L : C  | |���� D    →→→→    A  | |���� B ,    M : C ×××× D    →→→→    A ×××× B ,    N : C 
D     →→→→     A  

B 
 

by substituting f  – 1, g – 1, and g for the variables f, g, and g  – 1 in the corresponding 
definitions of H, J and K respectively.  Routine calculations (left to the reader) show that 
the maps L, M and N are inverses to the corresponding mappings H, J and K.�  
 
We shall see that operations on transfinite cardinal numbers do not satisfy some of the 
fundamental properties that hold for integers; for example, we shall see below that an 
equation of the form x + y  =  x  does not necessarily imply that x  =  0.  However, here 
is one important relationship that does generalize: 
 
Proposition 3.  If A is a set then |P(A)|   =   2 

|A|. 
 
Proof.   We need to define a 1 – 1 correspondence χχχχ from P(A) to the set of functions 
from A to the set {0, 1}.  Given a subset B, its characteristic function χχχχB : A  →→→→  {0, 1} 
is defined by χχχχB(x)  =  1  if x  ∈∈∈∈  B and 0 otherwise.  The map sending a subset to its 
characteristic function is 1 – 1 because B   =  χχχχB

 – 1
 [ {1} ], so that χχχχB  =  χχχχC  implies B   =  

χχχχB
 – 1

 [ {1} ]   =  χχχχB
 – 1

 [ {1} ]  =  C.  To see this is onto, let f : A  →→→→  {0, 1} and note that by 
definition we have f  =  χχχχB where B   =  f  – 1

 [ {1} ]  .� 
 
Finally, we have the following fundamentally important result due to Cantor. 
 
Theorem 4.  If A is a set then |A|  <  |P(A)|   =   2 

|A|. 
 
Proof. (∗∗∗∗)   Define a 1 – 1 mapping from A to P(A) sending an element a  ∈∈∈∈        A to the 
one point subset {  a }.  This shows that |A|  ≤≤≤≤  |P(A)| .   
 
The proof that |A|  ≠≠≠≠  |P(A)| is given by the Cantor diagonal process.  Suppose that 
there is a 1 – 1 correspondence F : A  →→→→     {0, 1}  

A.   The idea is to construct a new 
function g  ∈∈∈∈        {0, 1}  

A that is not in the image of F .  Specifically, choose g such that, for 
each a  ∈∈∈∈        A , the value g(a) will be the unique element of {0, 1} which is not equal to  
[ F(a) ] (a) ;  recall that  F(a) is also a function from A to {0, 1} and as such it can be 
evaluated at a.  Since the values of g and F(a) at a  ∈∈∈∈        A are different, these two 
functions are distinct, and since a  ∈∈∈∈        A is arbitrary it follows that g cannot lie in the 
image of F.  However, we were assuming that F was onto, so this yields a contradiction.  
Therefore there cannot be a 1 – 1 correspondence between A and P(A) .�   
 
Comments on the method of proof.  The reason for the name diagonal process is 
illustrated below when A is the set N + of positive integers.  One assumes the existence 

of a 1 – 1 correspondence between N + and P(N +) and identifies the latter with the set 

of functions from N + to {0, 1} in the standard fashion.  Then for each positive integer 
one has an associated sequence of 0’s and 1’s that are indexed by the positive 
integers, and one can represent them in a table or matrix form as illustrated below, in 
which each of the terms x j (where x is a letter and j is a positive integer) is equal to 
either 0 or 1. 
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The existence of a 1 – 1 correspondence implies that all sequences appear on the list.  
However, if we change each of the bold entries (i.e., the entry in the n th row and n th 
column for each n) by taking 0 if the original entry is 1 and vice versa, we obtain a new 

sequence that is not already on the list, showing that P(N + ) cannot be put into 

correspondence with N + and thus represents a higher order of infinity.�  
 
The preceding result implies that “ there is no set of all cardinal numbers.”   Stated 
differently, there is no set S such that every set A is in 1 – 1 correspondence with a 
subset of S.  If such a set existed, then the set P(S) would be in 1 – 1 correspondence 
with some subset T  ⊂⊂⊂⊂     S,  and hence we would obtain the contradiction  
 

|P(S)|   =   |T|   ≤≤≤≤   |S|   <   |P(S)|.� 
 
This observation is often called Cantor’s Paradox, and was noted by Cantor in 1899; it 
is very close to the original set – theoretic paradox that was discovered by C. Burali – 
Forti (1861 – 1931) a few years earlier and will be discussed in the next section. 
 
  

Some basic rules of cardinal arithmetic 
 
Addition and multiplication of cardinal numbers satisfy many of the same basic equations 
and inequalities that hold for nonnegative integers.  Here is a list of the most 
fundamental examples: 
 
Theorem 5.  The sum and product operations on cardinal numbers have the following 
properties for all cardinal numbers        αααα , ββββ and     γγγγ    : 
 

(Associative law of addition)        (αααα  +  ββββ)  +  γγγγ        =    αααα     +  (ββββ    +  γγγγ)     
 

(Commutative law of addition)        αααα  +  ββββ        =    ββββ  +  αααα     
 

(Associative law of multiplication)      (αααα⋅⋅⋅⋅ ββββ) ⋅⋅⋅⋅ γγγγ        =    αααα ⋅⋅⋅⋅ (ββββ⋅⋅⋅⋅ γγγγ)       
 

(Commutative law of multiplication)        αααα ⋅⋅⋅⋅ ββββ        =    ββββ ⋅⋅⋅⋅ αααα 
 

(Distributive law)        αααα ⋅⋅⋅⋅ (ββββ    +  γγγγ)            =    (αααα ⋅⋅⋅⋅ ββββ)  +  (αααα ⋅⋅⋅⋅ γγγγ) 
 

(Equals added to unequals)    αααα  ≤≤≤≤     ββββ       ⇒         αααα  +  γγγγ  ≤≤≤≤       ββββ  +  γγγγ 
 

(Equals multiplied by unequals)        αααα  ≤≤≤≤     ββββ       ⇒         αααα ⋅⋅⋅⋅ γγγγ  ≤≤≤≤       ββββ ⋅⋅⋅⋅ γγγγ 
 
The verifications of all these equations and inequalities are extremely straightforward.  
For example, the commutative law of addition merely reflects the commutative law for 
set – theoretic unions, and the commutative law of multiplication reflects the existence of 
the canonical 1 – 1 correspondence from the Cartesian product A ×××× B to the analogous 
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product with interchanged factors B ×××× A, which sends (a, b) to (b, a).   All the details are 
worked out on page 161 of Lipschutz.  These proofs do not use our formal definition for 
the sum of two cardinal numbers, but instead they use the following characterization: 
 
Lemma 6.  If X and Y are disjoint sets, then |X  ∪∪∪∪  Y|  =  |X| + |Y|.  Furthermore, if A and 
B are arbitrary sets, then there exist sets X and Y such that |X|  =  |A|, |Y|  =  |B|, and 
also X  ∩∩∩∩  Y  =  Ø. 
 
Proof.   The second part of the lemma follows from our disjoint union construction.  The 
first part will follow if there is a  1 – 1 correspondence H from X  | |���� Y  to X  ∪∪∪∪  Y.  An 
explicit construction of such a map is given by H(x, 1)  =  x  and H(y, 2)  =  y.  Since the 
image of this map contains both X and Y, it follows that H is onto.  To see it is 1 – 1, 
note that the restrictions to X ×××× {1}  and  Y ×××× {2} are both 1 – 1 so the only way the map 
might not be 1 – 1 is if one has x  ∈∈∈∈  X  and  y ∈∈∈∈  Y such that  H(x, 1)  =  H(y, 2).   The 
latter would imply that X and Y are not disjoint, and since we know they are disjoint it 
follows that there are no such elements x and y, so that H must also be 1 – 1 as 
required.� 
 
Although arbitrary cardinal numbers satisfy many of the same basic equations and 
inequalities as nonnegative integers, it is important to recognize that some algebraic 
properties of the latter do not extend.  In particular, the results below prove that a  
cardinal number equation of the form αααα  +  ββββ  =  αααα does not necessarily imply ββββ  =  0.  
Similarly, an equation of the form αααα ⋅⋅⋅⋅ ββββ  =  αααα does not necessarily imply that either ββββ  =  1 
or αααα  =  0.     
 
 
 

Identities and inequalities for cardinal numbers 
 
The following simple result illustrates a major difference between finite and transfinite 
cardinals: 
 
Proposition 7.  If A is finite, then |A| + ℵℵℵℵ0   =   ℵℵℵℵ0. 
 
Proof.  If |A|  =  0 this is trivial.  Suppose now that |A|  =  1, and let a be the unique 
element of A.  Let N be the natural numbers, and define a mapping h from A | | N to N 
by setting h(a, 1)  =  0 and h(n, 2)  =  n + 1 for  n  ∈∈∈∈  N.  By the Peano Axioms for the 
natural numbers, the restriction of h to N ×××× { 2 } is injective, and its image is the set of all 
positive integers.  Since h(a, 1) = 0, it follows that h is 1 – 1 and onto.  Therefore we 
have 1 + ℵℵℵℵ0  =  ℵℵℵℵ0.   
 
From this point on we proceed by induction on k  =  |A|.  Suppose we know the result in 
this case; we need to prove it is also true for |A|  =  k + 1.  This is an direct consequence 
of the following chain of equations: 
 

(k + 1)  +  ℵℵℵℵ0    =    (1 + k)  +  ℵℵℵℵ0    =    1  +  (k  +  ℵℵℵℵ0)    =    1 +  ℵℵℵℵ0    =    ℵℵℵℵ0 
 

This completes the proof of the inductive step and hence of the result itself.� 
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The following standard identities involving ℵℵℵℵ0 were first noted by Galileo (thus is 
frequently known as Galileo’s Paradox) and Cantor respectively. 
 

Theorem 8. (Idempotent Laws).    We have ℵℵℵℵ0 + ℵℵℵℵ0   =   ℵℵℵℵ0  and  ℵℵℵℵ0 ⋅⋅⋅⋅ ℵℵℵℵ0   =   ℵℵℵℵ0. 
 
Proof.   Let N be the nonnegative integers, and let N(0) and N(1) denote the subsets of 
even and odd nonnegative integers respectively.  Then the mappings sending n to 2 n 
and 2 n + 1 define 1 – 1 correspondences from N to N(0) and N(1) respectively.  Since 
N(0)  ∪∪∪∪  N(1)   =   N and N(0)  ∩∩∩∩  N(1)    =   Ø, it follows that 
 

ℵℵℵℵ0   =   |N|   =   |N(0)|  +  |N(1)|   =   |N|  +  |N|   =   ℵℵℵℵ0 + ℵℵℵℵ0 
 

proving the first assertion in the theorem.   
 
To prove the second assertion, we shall first define a 1 – 1mapping from N ×××× N to N by 

defining an equivalent map from N + ×××× N + to N + by a diagonal construction due to 
Cantor (also see Halmos, page 92).  The following picture illustrates the idea behind the 
definition of the function; the explicit formula is f(m, n)  =  ½ (m + n – 1)(m + n – 2) + m. 
 

 
 
 

(Source: http://www.cut-the-knot.org/do_you_know/numbers.shtml ) 
   

A verification that f is 1 – 1  is sketched in the exercises.  We also have an easily 
defined 1 – 1 mapping in the opposite direction sending n to  (n, 0).  We can now use 

the Schröder – Bernstein Theorem to prove the equality |N| =  |N ×××× N|, or equivalently 

that ℵℵℵℵ0 ⋅⋅⋅⋅ ℵℵℵℵ0   =   ℵℵℵℵ0.� 
 

Corollary 9.  For each positive integer n we have n  ⋅⋅⋅⋅ ℵℵℵℵ0   =   ℵℵℵℵ0  and  (ℵℵℵℵ0 ) 
n    =   ℵℵℵℵ0. 

 
Proof.   The main result proves the result for n  =  2, and it is trivial if n  =  1.   
 
The proof that the special case n  =  2 implies the general case can be done abstractly 
as follows:  Suppose that we are given any associative binary operation and an element 
a such that a 

2   =   a.   Under this condition we claim that an   =   a for all n  >  1.  The 
case n  =  2 is given, so assume that the result is true for some  k  >  1.  Then we have  
 

a k + 1    =    a k
 a    =    a a    =    a 
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completing the inductive step of the derivation.  We have written the binary operation 
multiplicatively, but of course we also could have written it additively, and thus the whole 
argument works for both addition and multiplication of cardinal numbers.� 
 
We now have the following standard consequences.  
 
Proposition 10.  Let C be a countable family of sets, each of which is countable.  Then 
the countable union of the countable sets $(C)  =  ∪∪∪∪ B ∈∈∈∈ C B is also countable. 
 
Proof.   Let A be the set of all ordered pairs (x, B) such that x  ∈∈∈∈  B and B  ∈∈∈∈ C.  If we 
define g : A →→→→ $(C) by projection onto the first coordinate, then g is onto.  By 
Proposition 3, it will suffice to prove that A is countable.  Let f : C →→→→ N be a 1 – 1 
mapping, and for each B ∈∈∈∈ C define a 1 – 1 mapping gB : B →→→→ N.  All these maps exist 
because C is countable and each subset B in C is countable.  Next we define a mapping 
h: A →→→→ N ×××× N by h(x, B)  =  ( gB(x) , f(B) ) .  We claim that h is 1 – 1.  Suppose that we 
have h(x, B)  =  h(y, D) .  By definition we then have f(B)  =  f(D) , and since f is 1 – 1 it 
follows that B  =  D.  Once again using the definitions we see that gB(x)  =  gB(y) , and 
since gB is 1 – 1 it follows that x  =  y.  This completes the proof that h is 1 – 1, which 
implies the key assertion that A  is countable; as noted earlier in the discussion, this 
completes the proof.� 
 
Proposition 11.  If Z and Q are the integers and rational numbers respectively, then we 
have |Z|  =  |Q|  =   ℵℵℵℵ0.  
 
The result for the integers was anticipated in Galileo’s writings on infinite sets, but the 
result regarding the rational numbers was something of a surprise to mathematicians 
when it was discovered by Cantor in the 1870s. 
 
Proof.    The standard inclusions N   ⊂⊂⊂⊂   Z   ⊂⊂⊂⊂     Q  imply a chain of corresponding 
inequalities  ℵℵℵℵ0  =  |N|   ≤≤≤≤   |Z|   ≤≤≤≤      |Q|.   Define a surjective mapping N  | |���� N     →→→→         Z 
sending (n, 1) to n and (n, 2) to – n.  By Theorem 8 it follows that  
 

|Z|  ≤≤≤≤      |N  | |���� N|   =   ℵℵℵℵ0  +  ℵℵℵℵ0   =   ℵℵℵℵ0, 
 

so the result for |Z| follows from the Schröder – Bernstein Theorem.   
 
Next define a surjective mapping Z ×××× (Z – {0} )     →→→→        |Q| sending (a, b) to a / b.  We then 

have |Q|   ≤≤≤≤      |Z ×××× (Z – {0} ) |   ≤≤≤≤       ℵℵℵℵ0 ⋅⋅⋅⋅ ℵℵℵℵ0   =   ℵℵℵℵ0.  Once again the Schröder – 
Bernstein Theorem implies that |Q|   =   ℵℵℵℵ0.�     
 
The next natural question concerns the cardinality of the set of the real numbers, and the 
result is again due to Cantor. 
  
Theorem 12.  If R denotes the real numbers, then its cardinality satisfies |R|  =   2 

ℵℵℵℵ0  
and therefore we have  |R|   >   ℵℵℵℵ0.  
 
Proof.   Usually this is derived using decimal expansions of real numbers, but we shall 
give a proof that does not involve decimals (although the idea is similar).  The idea is to 
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construct 1 – 1 maps from R to P(N) and vice versa and then to apply the Schröder – 
Bernstein Theorem. 
 
Let D: R  →→→→  P(Q) be the Dedekind cut map sending a real number r to the set of all 
rational numbers less than r  .  Since there is always a rational number between any two 
distinct real numbers, it follows that this map is 1 – 1.   Since |Q|  =   ℵℵℵℵ0 , it follows that 
there is a 1 – 1 correspondence from P(Q) to P(N),  and the composite of D with this 
map gives the desired 1 – 1 map from R to P(N). 
  
Let P∞∞∞∞(N) denote the set of all infinite subsets of N, and define a function from  P∞∞∞∞(N)  
to R as follows:  Given an infinite subset B, let  χχχχB  be its characteristic function and 
consider the infinite series 
 

ΣB    =   Σk  χχχχB (k) ⋅⋅⋅⋅ 2 – k
 . 

 

This series always converges by the Comparison Test because its terms are 

nonnegative and less than or equal to those of the geometric series Σk  2 – k, which we 
know is convergent. Furthermore, different infinite subsets will yield different values 
(look at the first value of k that is in one subset but not in the other; if, say, k lies in A but 

not in B then we have ΣA  >  Σ B. Note that all these sums lie in the interval [0, 1] 

because Σk  2
 – k  =  1. 

 
If A is a finite subset, consider the finite sum 
 

ΣB    =   2  +  Σk  χχχχB (k) ⋅⋅⋅⋅ 2 – k
 . 

 

Once again it follows that different finite subsets determine different real (in fact, rational) 
numbers.  Furthermore, since the value associated to a finite set lies in the interval [2, 3] 
it is clear that a finite set and an infinite set cannot go to the same real number. 
Therefore we have constructed a 1 – 1 function from P(N) to R.�  
 
Since we have constructed 1 – 1 mappings in both directions, we can apply the 
Schröder – Bernstein Theorem to complete the proof. 
  
Finally, we prove another fundamental, well – known result about the cardinality of R 

n :  
 
Theorem 13.   Given an arbitrary set A, let A  

n denote the n – fold product of A with 
itself.  If R denotes the real numbers, then for all positive integers n we have |Rn|  =  |R|. 
 
One slightly nonintuitive consequence of this theorem is the existence of a 1 – 1 
correspondence between the points of the number line and the points on the coordinate 
plane.   Of course, these objects with all their standard mathematical structures are quite 
different, but the theorem says that they cannot be shown to be distinct simply by means 
of transfinite cardinal numbers. 
   
Using the axiom(s) introduced in the next section one can show that n  ⋅⋅⋅⋅ |A|  =  |A|  and 
|An|   =   |A| as above for every infinite set A and positive integer n, but here we shall 
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outline a direct and relatively standard argument which does not depend upon the 
additional axiom(s). 
 
Proof.  There are two parts to the proof.  The first is to verify the result when n  =  2 and 
the second is to show that the case n  =  2 implies the general case.  The argument to 
prove the latter is essentially the same as in the Corollary to the Idempotent Laws for the 
cardinal number ℵℵℵℵ0 (specifically, see Corollary 9). 
 
We now concentrate on the case n  =  2.  The argument is based upon the existence of 
a 1 – 1 correspondence  
 

{0, 1}  
N   →→→→  {0, 1}   

N(0) ×××× {0, 1}  
N(1) 

 

sending a function N  →→→→  {0, 1} to the ordered pair given by its restrictions to the even 
and odd natural numbers; clearly a function is completely determined by these 
restrictions, and conversely given functions on the even and odd natural numbers there 
is a unique way of assembling them into a function defined on all the natural numbers.  
This observation yields the cardinal number identity 
 

2ℵℵℵℵ0    =    2ℵℵℵℵ0  ××××  2ℵℵℵℵ0 
 

and the validity of the theorem for n  =  2 follows from this and the previously established 
identity  |R|  =   2ℵℵℵℵ0 .� 
 
Corollary 14.   We also have 2ℵℵℵℵ0    =    2ℵℵℵℵ0  +  2ℵℵℵℵ0 and 2ℵℵℵℵ0    =    ℵℵℵℵ0  ××××  2ℵℵℵℵ0 . 
 
Proof.   These are consequences of the following chain of inequalities: 
 

2ℵℵℵℵ0    ≤≤≤≤    2ℵℵℵℵ0  +  2ℵℵℵℵ0    ≤≤≤≤    ℵℵℵℵ0  ××××  2ℵℵℵℵ0    ≤≤≤≤    2ℵℵℵℵ0  ××××  2ℵℵℵℵ0    =    2ℵℵℵℵ0 � 
 

Remark.  The following generalizations of the usual laws of exponents also hold for 
cardinal numbers: 
 
Theorem 15.  (Transfinite Laws of Exponents).  If αααα,,,,  ββββ  and  γγγγ  are (finite or transfinite) 
cardinal numbers, then the following equations hold: 
    

γγγγ    αααα    ++++ ββββ            ====            γγγγ    αααα ⋅⋅⋅⋅ γγγγ    ββββ    
    

((((γγγγ    αααα
    ))))    ββββ            ====            γγγγ    αααα    ββββ    

    

((((ββββ    γγγγ))))    αααα             ====            ββββ    αααα
    ⋅⋅⋅⋅ γγγγ    αααα    

 

The last two equations follow from the 1 – 1 correspondences for function sets that were 
discussed in Section I  V. 5 (see Theorem I  V. 5.7), and the proof of the first follows from 
the analogous 1 – 1 correspondence between C 

A 
 
| |  B and C 

A ×××× C 
B

 ,  a special case of 
which was discussed in the proof of Theorem 13 in this section.�  
 
 

Applications to transcendental numbers 
 
Cantor was led to develop set theory in his study of some basic questions about 
trigonometric series, and a few years after beginning this work he found a striking 
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application to a longstanding problem of independent interest.  We begin with the 
definitions needed to formulate the problem.  
 
Definition.  Let x be a real number.  Then x is said to be algebraic if there is a nontrivial 
polynomial with rational coefficients (equivalently, integral coefficients; cf. next 
paragraph) for which x is a root.  A real number is said to be transcendental if it is not a 
root of any such polynomial. 
 
Since every polynomial over the rational numbers can be written as an integral 
polynomial divided by a nonzero integer, it follows that a number is a root of a nontrivial 
polynomial over the rational numbers if and only if it is a root of a nontrivial polynomial 
over the integers.. 
 
Lemma 16.  If x and y are real numbers such that x is rational and y is transcendental, 
then their sum x + y is transcendental. 
 
Proof.    Suppose that x + y is algebraic.  Then there is a nontrivial polynomial p with 
rational coefficients which has x + y as a root.  Dividing through by the (nonzero) 
coefficient of the highest degree term of p if necessary, we can assume that p is a monic 
polynomial.  Express this monic polynomial as t  

n +  q(t), where q has lower degree.  Our 
hypotheses then imply that (x + y) 

n  +  q(x + y)  =  0.  By the Binomial Theorem we may 
rewrite this as y  

n + r(y)  =  0, where r(t) is another polynomial of lower degree with 
rational coefficients.  This implies that y is algebraic, contradicting our original 
assumption, and hence the only possibility is that x + y must be transcendental.� 

 
Corollary 17.  If there is at least one transcendental real number, then the cardinality of 

the set T of transcendental real numbers satisfies ℵℵℵℵ0   ≤≤≤≤   |T|. 
 
Proof.  Suppose that y is transcendental.  Then one can define a mapping from the 
rational numbers Q to T sending x ∈∈∈∈ Q to x + y ∈∈∈∈ T.  This mapping must be 1 – 1 
because x + y  =  z + y implies x  =  z.� 
 
In the next unit we shall prove a more general result about infinite cardinal numbers, but 
the preceding corollary gives us what we need for the time being. 
 
In order to compare the algebraic and transcendental real numbers, we need to know 
the cardinality of the former, and it is given by the following result: 
 
Theorem 18.  The set of all algebraic real numbers is countably infinite. 
 
Proof. (∗∗∗∗)  Since the set of algebraic real numbers contains the integers, it will suffice to 
show that the set of algebraic numbers is countable.  For each positive integer n let A  n 
be the set of all real numbers r such that r is a root of a polynomial of degree n with 
rational coefficients.  Since a countable union of countable sets is countable, it will 
suffice to show that each set A  n is countable.   
 
Let Pn denote the set of all polynomials of degree n, and for each p  ∈∈∈∈  Pn  let  W(p) 
denote the set of real roots for p.  Basic results on roots of polynomials show that each 
set W(p) is finite.  If we can show that |W(p)|  =  ℵℵℵℵ0 , it will follow that An is a countable 
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union of the finite sets W(p), where p runs through the elements of Pn  ,  and hence A  n is 
countable. 
 
Now a polynomial in Pn has the form 
 

p(t)    =    an tn  +  …  +  a1 t  +  a0 
 

where an   ≠≠≠≠     0, and hence it is completely determined by the coefficients of the powers 
of the indeterminate, say t, ranging from 0 to the degree, which in this case is n.  This 
means there is a canonical 1 – 1 correspondence between Pn  and (Q – {0}) ×××× Q 

n 

(where as usual Q denotes the rational numbers) which is given by taking the 
coefficients of t  k as k runs from n to 0.  Now we know that   |Q|   =  ℵℵℵℵ0 by Proposition 
11, and we also know that  |Q – {0}|  =  |Q|  by Propositions 7 and 11, so that we have 
|W(p)|  =  (ℵℵℵℵ0  ) n + 1

 .  However, by Corollary 9 we also know that (ℵℵℵℵ0  ) k   =  ℵℵℵℵ0  for all 
values of k, and this means that |W(p)|  =  ℵℵℵℵ0 must be true.  As noted before, this 
completes the proof of the theorem.� 
 
Historical remarks on transcendental numbers.  It is not clear when mathematicians 
first considered the concept of a transcendental number, but various historical facts 
strongly suggest that this took place near the middle of the 17th century in connection 
with the results and viewpoints of R. Descartes (cf. page 343 of Burton).   A few years 
later, J. Gregory (1638 – 1675) tried to show that both ππππ and e were transcendental; 
however, his work had a small but irreparable error.  Leibniz also concluded that ππππ was 
transcendental but did not make a significant effort to prove this.  Several 18th century 
mathematicians such as C. Goldbach (1690 – 1764), D. Bernoulli (1700 – 1782), J. H. 
Lambert (1728 – 1777), and A. – M. Legendre (1752 – 1833) had considered the 
possible existence of transcendental numbers, and there was a general agreement that 

numbers ππππ and e should be transcendental although it was not clear how one might 
actually prove these statements.   One important piece of evidence was the 
understanding at the time that some of the standard functions in calculus like sin x and 
ex

 were not algebraic functions (i.e., there is no nontrivial polynomial in two variables 
such that P( x, f(x) ) is identically zero).  We shall discuss this point in greater detail 
below.   The existence transcendental numbers was first shown rigorously by J. Liouville 
(1809 – 1882) in the 1840s.  Probably the best known example arising from his work is 
the so – called Liouville constant: 
 

 
 

The following online sites provide further information about Liouville’s methods and 
results:  
 

http://planetmath.org/encyclopedia/ExampleOfTranscendentalNumber.html 
 

http://en.wikipedia.org/wiki/Liouville_number 
 

During the next few decades, proofs that e and ππππ were transcendental finally appeared; 
these results were due to C. Hermite (1822 – 1901) and F. Lindemann (1852 – 1939) 
respectively.  Many other easily constructed numbers have been shown to be 
transcendental numbers since the original results of Liouville, but there are still many 
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open questions that are very easy to state but seem unlikely to be answered in the near 
future.  The current state of affairs is summarized in the following online site: 
 

http://mathworld.wolfram.com/TranscendentalNumber.html 
 

The purpose of the preceding discussion is to put Cantor’s result on transcendental 
numbers into perspective.  At the time, the existence of such numbers had only recently 
been established, and the proofs required delicate manipulations of equations and 
inequalities.  In contrast, Cantor’s existence proof did not require any significant 
computations, but it also did not produce any explicit examples (although one can 
combine Cantor’s diagonal process argument with Liouville’s construction to describe an 
uncountable family of transcendental numbers).  We should note that currently known 
results are still not adequate to answer many very easily stated questions; for example, 
whether ππππ e or ππππ    + e is transcendental (however, we do know that at least one of these 
numbers is transcendental).   
 
Theorem 19. (Strong existence theorem for real transcendental numbers – 
Cantor).  The set of transcendental real numbers is nonempty, and its cardinality is 
equal to 2ℵℵℵℵ0

 . 
 
Proof.  As in the preceding discussion, the set of real numbers R splits into a union of 
the disjoint subsets A of algebraic real numbers and T of transcendental real numbers.  
Thus we have |R|  =  |A| + |T|  =  ℵℵℵℵ0  +  |T|.   If T were empty we would have |R|  =  ℵℵℵℵ0, 
and we know this is false by the results of Section 4.  Therefore T must be nonempty, 
and by the lemma above it follows that there is a 1 – 1 mapping from A into T; let T0 
denote the complement of its image, so that |T|  =  |A| +  |T0|  =  ℵℵℵℵ0  +  |T0| .  Therefore 
we have  
 

|T|    =     ℵℵℵℵ0  +  |T0|    =     ℵℵℵℵ0  +  ℵℵℵℵ0  +  |T0|    =     ℵℵℵℵ0  +   |T|  =   |R|  =  2ℵℵℵℵ0 . 
 

We now indicate how one can use Cantor’s result to answer one of the questions at the 
beginning of these notes in the very strong informal sense: 
 

Almost every real number is transcendental.  In particular, if one “chooses 
a real number at random,” it will almost certainly be transcendental. 

 

Giving a mathematically precise definition of random choice is far beyond the scope of 
this course, but here is a discussion that can be made mathematically rigorous.  Let us 
agree to restrict attention to real numbers in the closed unit interval [0, 1].  Given a 
reasonable subset A of the latter (these will include all countable subsets), one would 
like to estimate the probability that an element of the interval chosen at random will 
belong to A.  If, say, we divide the interval into n nonoverlapping pieces of equal length, 
then the likelihood of choosing an element from one of the pieces should be just 1 / n.  
More generally, if we are given a subinterval of length L then the likelihood of choosing a 
point from the subinterval should be L.   
 
How does this apply in our situation?  Suppose that B denotes the algebraic numbers in 
the closed unit interval, so that B is countable by our previous results.  Choose a 1 – 1 
correspondence with the natural numbers, and let m  >  0 be an integer.  For each n, let 
Jn be a subinterval of length 2 

–
 
(m + n) containing the n th point in B.  The likelihood that a 

chosen element will lie in B should be no greater than the likelihood that it will lie in the 
union of the intervals Jn and hence it should be no greater than the sums of the lengths 
of these intervals.  We can use a geometric series argument to see that the latter sum is 
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equal to 2 
1 – m

 .  Now m is arbitrary, so this means that the likelihood of randomly 
choosing an element from B is no greater than 2 

1 – m for every positive integer m, and 
hence (since it is nonnegative) this likelihood must be equal to zero.  Informally, this 
means that if we pick a number from the unit interval at random, it is almost certain to be 
a transcendental number.�  
 
Footnote on transcendental functions.  In the discussion above we have asserted 
that certain basic functions such as trigonometric functions and exponential functions are 
transcendental.  Since it is difficult to find statements or proofs of these facts written out 
explicitly, we shall explain how the proof for the usual exponential function follows from 
standard results on solutions to ordinary differential equations which are covered in 
lower division undergraduate courses and we shall give an online reference that 
considers the remaining elementary transcendental functions.  
 
The first step is fairly simple.  
 
Lemma 20.  Let f(x) be a continuous function on some interval.  Then f is transcendental 
if and only if for every positive integer m the (m + 1) 2 functions x  

p f(x) 
q are linearly 

independent over the real numbers, where 0  ≤≤≤≤     p  , q  ≤≤≤≤  m  .   
 
Proof.  The (m + 1) 2 functions x  

p f(x) 
q are linearly dependent over the reals if and only 

if there is some set of coefficients c  p, q which are not all zero such that  ΣΣΣΣ c  p, q x  
p f(x) 

q  
=  0.  Thus if they are linearly dependent for some m, then there is a nontrivial 

polynomial G(x, y)  =  ΣΣΣΣ c  p, q x  
p

  y  
q  such that  G(x, f(x) )  =  0.  Conversely, if we are 

given such a polynomial G and m is the highest power of x or y that appears, then it 
follows that the (m + 1) 2 functions x  

p f(x) 
q are linearly dependent over the real numbers. 

Sdfa sadf By the lemma, proving that the exponential function e x is transcendental 
amounts to showing that the functions x  

p
 eq x are linearly independent functions for 0  ≤≤≤≤     

p  , q  ≤≤≤≤  m, where m is an arbitrary positive integer.   One relatively quick way to see this 
is to notice that the functions in question all satisfy an Nth order homogeneous linear 
(ordinary) differential equation with constant coefficients  
 

DN
 y  +  a N – 1 D N – 1

 y  +  …  +  a1 D y  +  a0 y  =  0 
 

where N  =  (m + 1) (m + 1)  and Dk
 y denotes the k th derivative of y.  Specifically, this is the 

equation for which the associated characteristic polynomial  
 

p(t)    =    a N t  N  +  a N – 1 t  N – 1  +  …  +  a1 t  +  a0 
 

is given by the following product: 
 

p(t)    =    t  m + 1 (t – 1) m + 1 …  (t – m) m + 1 
 

The linear independence of these solutions is a standard fact in the theory of ordinary 
differential equations, and in particular, the proof is described in Section 9.2 of the 
following representative textbook on the subject:  
 

W. F. Trench, Elementary Differential Equations.  Brooks/Cole 
(Thomson Learning), Pacific Grove CA, 2000. ISBN: 0–534–36841–7.  

 

More specific references for the proof are essentially the entire content of pages 453 – 
454 as well as Exercise 40 on page 457. 
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This linear independence result was essentially known in the 18th century to L. Euler 
(1707 – 1783), with some refinements of the concepts due to G. Monge (1746 – 1818) 
and A. – L. Cauchy (1789 – 1857).   
 
The online document   
 

http://math.ucr.edu/~res/math144/transcendentals.pdf 
 

establishes similar results for the other so – called elementary transcendental 
functions that are studied in precalculus and calculus, and it provides some additional 
general perspective on determining when a function is algebraic or transcendental.  
Since this document uses material on extension fields from advanced undergraduate 
and beginning graduate courses, it is included mainly for reference purposes; although 
the main results are extremely well – known, it is extremely difficult to find a reference in 
which the various functions are actually proven to be transcendental. Asd 
 
 

Cardinal number problems for further consideration 
 
Here are some natural questions that arise in connection with the results of this section.  
Some involve generalizations of these results, and others are simple questions about the 
arithmetic and ordering properties of cardinal numbers. 
 

1. Is the partial ordering of cardinal numbers a linear ordering? 
2. Is ℵℵℵℵ0 the smallest transfinite cardinal number? 
3. If A is an infinite set, does it follow that the idempotent identities 

|A| ⋅⋅⋅⋅ |A|  =  |A| and |A| + |A|  =  |A| always hold? 
4. If there is a surjection from A to B, does it follow that |B|  ≤≤≤≤  |A| ?  
5. Given a cardinal number αααα, is there a unique minimal cardinal 

number ββββ    such that ββββ        >>>>        αααα? 
 

Most of these seem likely, and the final question is closely related to Cantor’s 
terminology for transfinite cardinal numbers.  For example, if the answers to this 
question and the first one are yes, then one can define ℵℵℵℵ1 to be the unique minimal 
cardinal number strictly greater than ℵℵℵℵ0 , then take ℵℵℵℵ2 to be the unique minimal cardinal 
number strictly greater than ℵℵℵℵ1 , and so on.  
 
However, despite strong intuitive feelings that the preceding questions have affirmative 
answers, we are not yet equipped to answer such questions, and the material in the next 
two units is needed to provide answers.  Before introducing this material, we shall 
devote the next section to a discussion of some ways in which Cantor’s theory of sets 
was a radical departure from previous views of infinite objects in mathematics.   
 
  
 

VI  .5 :     The impact of set theory on mathematics  
 
 

Given the routine use of set theory throughout modern mathematics, it is easy to 
overlook the precedent shattering nature of Cantor’s legacy.  The rest of this section 
provides some historical perspective. 
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It is not known exactly when questions about the concept of infinity first arose, but the 
well – known paradoxes due to Zeno of Elea (c. 490 – 430 B. C. E) indicate that ancient 
Greek philosophers and mathematicians recognized that difficulties arise when one 
attempts to discuss the infinite.  The writings of Aristotle (384 – 322 B. C. E.) provided an 
effective way of confronting such questions by arguing that there were two kinds of 
infinity.  

1. Actual infinity, or completed infinity, which Aristotle believed 
could not exist, is endlessness fully realized at some point in time.  

2. Potential infinity, which Aristotle maintained was manifest in 
nature — for example, in the unending cycle of the seasons or the 
indefinite divisibility of measurements — is infinitude spread over 
unlimited time and space.  

This fundamental distinction between potential and actual infinity persisted in European 
mathematics for more than 2000 years.  

However, the adoption of this distinction did not mean that speculation about infinity was 
absent from all of mathematics during that time.  Speculations about infinity appeared in 
classical Indian mathematics, particularly in the writings of Bhaskara (also known as 
Bhaskara I  I  or Bhaskaracharya, 1114 – 1185).   By the end of the Middle Ages, various 
scientific, philosophical and theological questions about infinity received considerable 
attention in Europe as well as India and China.  Many of the mathematical advances 
concerned summations of infinite series.  With hindsight, it is apparent that the 
summation formulas for many series obtained during these centuries showed that the 
concept of completed infinity could be mathematically meaningful, at least in some 
contexts.   Certain basic paradoxes and puzzles arose and provided further evidence 
that actual infinity was not an issue to be dismissed easily. Specific problems arise from 
many standard 1 – 1 correspondences between infinite sets and certain proper subsets; 
for example, between the nonnegative integers and the even nonnegative integers.  
These constructions seemed to contradict a commonsense idea that appears in Euclid: 
The whole is always greater than any of its (proper) parts.  The writings of Galileo 
(G. Galilei, 1564 – 1642) on such problems were the first to suggest a more enlightened 
attitude toward the infinite; in particular, he proposed that “ infinity should obey a different 
arithmetic than finite numbers.”    We have seen that one version of Galileo’s idea plays 
an important role in Cantor’s work.  However, during the nearly three centuries between 
Galileo and Cantor, mathematicians managed to avoid confronting questions about 
infinity for the most part.  By confining their attention to Aristotle’s potential infinity, 
mathematicians were able to address problems and develop crucial concepts including 
infinite series, limit, and infinitesimals [sic], and thus to develop calculus without having 
to grant that infinity itself was a mathematical object.  In fact, early in the 19th century the 
highly eminent mathematician C. F. Gauss (1777 – 1855) expressed his “horror of the 
actual infinite” in the following terms:  

I protest most vehemently against the use of infinite magnitude as 
something completed, which is never permissible in mathematics. The 
infinite is merely a figure of speech, the true meaning being a limit which 
certain ratios approach as closely as we wish, while others may be 
permitted to increase beyond all bounds. 



 137

Even Cantor admitted that considering infinite sets as single entities — not as merely 
going on forever but as completed objects — was a concept to which he had been 
“ logically forced, almost against my will.”   This erasing of the distinction between 
potential and actual infinities was “ in opposition to traditions that had become valued.”   

Cantor’s ideas generated considerable opposition and controversy for several reasons.  
For many mathematicians, the sets themselves were less disturbing than the uses to 
which Cantor put them; some mathematicians were particularly uneasy with Cantor’s 
proof showing that “ almost every”  real number is transcendental; i.e., they are not roots 
of polynomial equations with rational coefficients.   As noted in the discussion of Cantor’s 
result, a considerable amount of intricate calculation is needed to prove that there are 
transcendental numbers and to verify the “obvious facts” that familiar numbers like e and 

ππππ    are transcendental.  Cantor’s existence proof required no significant computations at 
all, and in some respects it looks as if one is getting something for nothing.  Of course, 
one reason the argument is so simple is that it does not provide any way of deciding 
whether a given number is algebraic or transcendental. 

Cantor's result on transcendental numbers was the first important example of what has 
come to be called a pure-existence proof. Giving not the slightest hint of how to 
construct even a single transcendental number, it established the existence of a host of 
such numbers by proving that it would be contradictory for them not to exist. Once again 
the basic issue is infinity. A proof by reductio ad absurdum that establishes the existence 
of an object in a finite set is perfectly acceptable to any mathematician; one can always 
in principle produce the object by checking through all the members of the set.  

But the same is not true for, say, the transcendental numbers, which belong to the 
infinite set of real numbers. For this reason many mathematicians rejected Cantor's 
proof completely, objecting that a contradiction was no substitute for a tangible example.   

However, other mathematicians were unwilling to accept Cantor’s entire approach, 
which challenged established mathematical principles like the previously mentioned 
avoidance of actual or completed infinity. For example, H. Poincaré (1854 – 1912) 
expressed his disapproval in a statement that Cantor's set theory would be considered 
by future generations as “a disease from which one has recovered.”  Much stronger 
criticism was voiced by L. Kronecker (1823 – 1891), who strongly maintained that the 
appropriate objects for mathematical study were those that could be realized in a fairly 
concrete fashion (for example, his views excluded transcendental numbers entirely). 
Such a perspective leaves little place for the explicit treatment of “actual infinity” that 
permeates Cantor’s work.  On the other hand, not all leading mathematicians were 
opposed to Cantor's ideas. Some highly eminent mathematicians such as G. Mittag – 
Leffler (1846 – 1927), K. Weierstrass (1815 – 1897), and long – time friend R. Dedekind 
supported Cantor’s ideas and defended them against his critics.  Aside from the 
revolutionary nature of Cantor’s ideas, another reason for reservations about them was 
that some key concepts were initially expressed in a somewhat imprecise fashion, and 
yet another was that some basic questions about manipulating infinite sets turned out to 
be far more challenging than they seemed at first; these will be discussed further in 
Section 4.  Unfortunately, the strain of the controversy over Cantor’s work ultimately 
inflicted an extremely heavy toll on him.    
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Of course, our use of Cantor’s ideas today and our presentation of his existence proof 
for transcendental numbers both indicate that his methods and results were increasingly 
accepted as mathematically valid.  In particular, during the years immediately following 
Cantor’s work, some mathematicians solved some other fundamental problems using 
pure, nonconstructive existence proofs; the most striking result of this sort called the 
Hilbert Basis Theorem was obtained by D. Hilbert (1862 – 1943) in 1889.   A statement 
of this result requires concepts well beyond the scope of this course, but for the sake of 
completeness here is an online reference to one fundamental but (relatively) elementary 
class of special cases: 

http://en.wikipedia.org/wiki/Hilbert's_basis_theorem 

Hilbert was one of the most influential mathematicians of his time, and his acceptance of 
Cantor’s work reflected the incorporation of set theory into the mainstream of 
mathematics.   The following frequently quoted statement states his position very 
strongly but concisely:  No one shall expel us from the paradise that Cantor has 
created. 

Hilbert addressed concerns about increasing abstraction by stressing the vast amount 
that could be done if one adopts such an approach in contrast to the relatively limited 
amount that could be done if one does not.  To most mathematicians in the early 20th 
century, Hilbert's formalist viewpoint offered an attractive viewpoint, and a largely 
dominant majority of present day mathematicians also take a modified formalist view 
towards the subject.  These modifications are necessary because of the fundamental 
incompleteness results due to K. Gödel that will be discussed in the next unit.  

 
 
 

VI  . 6 :     Transfinite induction and recursion 
 
 

 
(Halmos, §§ 12 – 13, 17 – 20;  Lipschutz, §§ 8.1 – 8.9, 8.12 – 8.13) 

 
 
This section has two objectives.  The first is to formulate concepts of  
 

(1) proof by transfinite induction,   
(2) definition by transfinite recursion,  
 

which apply to well – ordered sets that are larger than the nonnegative integers.  The 
second aim is to summarize the basic properties of ordinal numbers that are used most 
often in mathematics.   
 
The proofs of many crucial results on well – ordered sets are considerably less 
elementary than most of the material in these notes.  In particular, at several steps one 
needs slightly stronger versions of some axioms and definitions than we have stated in 
these notes.  Precise statements appear in the book by Golrei cited at the beginning of 
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the first unit of these notes; in cases where we have stated simplified versions of axioms, 
we have done so for the sake of clarity and because the simpler versions are adequate 
for nearly everything one wishes to do in other branches of mathematics.  Finally, for 
most mathematical purposes the theory of well – ordered sets are mainly significant as 
means to some other end, and such objects play less of direct role in other branches of 
mathematics than the other material discussed in these notes. For these reasons, we 
shall not attempt to give all the details of the more complicated proofs here, but instead 
we shall describe some of the arguments and give references to the book by Goldrei.  
None of the subsequent material in these notes will depend upon the results that are 
stated without complete proofs. 

Given the relative difficulty of some material in this section, the following suggestions 
might be helpful.   The most important thing to do is to concentrate on understanding the 
definitions and statements of the main results.  This should provide enough information 
to read the remaining sections in these notes.  When these points are understood, a 
natural second step is to understand the outlines and main ideas of the proofs well 
enough to be able to summarize or explain them.  For the purposes of this course, the 
final level of mastery is to have a full understanding of all the steps in the proofs.   

Traditionally the elements of a well – ordered set are denoted by expressions involving 
nonnegative integers and Greek letters, and we shall follow this convention here. 

Notational conventions.  Suppose that X is a well – ordered set.  The least element of 
X will be denoted by 0 or by 0 X when it is necessary to stress the dependence upon X.  
If αααα        ∈∈∈∈     X, the initial segment associated to αααα    is the set of all ββββ    such that ββββ            <            αααα    ,     and it 
is denoted by [0, αααα) or less ambiguously by [0, αααα) X .  Likewise, we define the closed 
interval  [0, αααα] to be the set of all ββββ    such that ββββ            ≤≤≤≤            αααα    .      Given a well – ordered set X, its 
immediate successor X + 1 is the set X  ∪∪∪∪  { X } with the original well – ordering on X 
and the added element X strictly greater than every αααα        ∈∈∈∈     X.  Recall that we have 
constructed set theory so that no set will be a member of itself, and thus it follows that X 
is distinct from each αααα        ∈∈∈∈     X.   

 
 

Transfinite induction and recursion 
 

Transfinite induction is an adaptation of proof by mathematical induction to include 
(large) well-ordered sets. 

Before discussing this principle it will be useful to make the following elementary 
observation. 

Proposition 1.  Let X be a well – ordered set, and let αααα ∈∈∈∈ X.  Then exactly one of the 
following is true. 

(1) There is a ββββ  ∈∈∈∈  X such that αααα is the first element in X that is strictly 
larger than ββββ, and αααα is not the least upper bound of all elements of X 
that are strictly less than αααα. 
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(2)  For each ββββ such that ββββ  <  αααα there is some γγγγ ∈∈∈∈ X such that ββββ  <  γγγγ  <  αααα, 
and αααα is the least upper bound of all elements of X that are strictly 
less than αααα. 

Proof.  If the first holds, then ββββ is the least upper bound of all elements of X that are 
strictly larger than αααα.  Suppose now that the second holds.  Clearly a is an upper bound 
for the set in question.  To see that it is the least upper bound, note that if ββββ  <  αααα then ββββ 
cannot be an upper bound because there is always some γγγγ such that ββββ  <  γγγγ  <  αααα.� 

Notation.  Elements of the first type are called (immediate) successor elements (and 
one often writes αααα  =  ββββ + 1 or αααα  =  ββββ+

 in this case), and elements of the second type are 
called limit elements. 

We now proceed to the main results. 

Theorem 2. (Principle of transfinite induction.)   Let X be a well – ordered set, and 
suppose that for each αααα  ∈∈∈∈     X we are given a statement S(αααα) such that the following 
conditions hold: 

(1) If 0X denotes the unique minimum element of X, then S(0X) is true. 

(2) For each ββββ in X, if S(γγγγ) is true for all γγγγ  <  ββββ, then S(ββββ) is true, 

Then S(αααα) is true for every αααα  ∈∈∈∈     X. 

Proof.  The argument is similar to the one for finite induction.  Suppose that at least one 
of the statements is false.  Then there is a unique minimum αααα0 such that S(αααα0) is false.  
Since S(0X) is true we know that αααα0  ≠≠≠≠  0X and thus the set of all ββββ such that ββββ  <  αααα must 
be nonempty.  For each such ββββ the statement S(ββββ) is true, and therefore by the second 
condition we know that S(αααα0) is also true.  Now this contradicts our choice of αααα0, and the 
problem arises from our assumption that at least one of the statements S(αααα) is false.  
Thus all of the statements must be true.� 

In practice, the verification of the second condition often splits into two cases: One for 
successor elements (those which have an immediate predecessor), where the usual 
inductive approach can be applied to show that P(γγγγ) implies P(γγγγ + 1), and the case for 
limit elements, which have no predecessor, and thus cannot be handled by such an 
argument. 

Typically, the case for limit ordinals is approached by noting that a limit element ββββ is the 
least upper bound of all elements γγγγ  <  ββββ and using this fact to prove P(ββββ) assuming that 
P(γγγγ) holds true for all γγγγ  <  ββββ. 

Transfinite recursion is a closely related to transfinite induction, but the latter is a 
method of proof and the former is a method of definition or of construction. The basic 
idea is fairly simple.  We start with a well – ordered set ΛΛΛΛ and specify the object for the 
zero (least element), then assuming we know how to define the object indexed by γγγγ    for 
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every γγγγ  <  αααα, we use this partial function to find f(αααα).  In a little more detail, one defines a 
family of objects indexed by the well – ordered set X  —  say Bαααα , for every αααα  ∈∈∈∈     X, or 
perhaps every αααα less than some bound ξξξξ  —  by specifying three things: 

• What B0 is. 
• How to determine Bαααα + 1 from Bαααα (or possibly from the entire sequence up to Bαααα). 
• For a limit element  αααα, how to determine Bαααα from the sequence of previously 

determined B     γγγγ for γγγγ  <  αααα . 

Formally there is not much formal difference between the second and third items, but in 
practice they are so often distinct that it is useful to present them separately. 

Here is the formal statement. 
 
Theorem 3. (Transfinite Recursive Definition Theorem.)  Suppose that X is a well – 
ordered set and B is a set which does not necessarily have any additional structure.  
Assume also that for αααα        ∈∈∈∈     X we have a function H : B [ 0, αααα )  →→→→ B, and let z0 ∈∈∈∈ B.  Then 
there is a unique function f : X  →→→→ B such that f(0)  =  z0 and for all positive n we have 
 

f(αααα)  =  H( f  | [  0, αααα ) ). 
 
Proof.  The approach is parallel to the proof of the (Finite) Recursive Definition Theorem 
that was proven in Section V.2.  One establishes existence by defining a sequence of 
functions g  αααα :  [  0, αααα ]  →→→→  B  which agree on the overlapping subsets; one then 
constructs a function g whose graph is the union of the graphs of the partial functions.  
The uniqueness proof will then reduce to proving uniqueness for the restrictions to each 
subset [ 0, αααα ]. 
 
The function g0 :  { 0 }  →→→→ B  is defined by g0 ( 0 )  =   z0.  Suppose we are given the 
functions g  ββββ :  [ 0, ββββ ]  →→→→  B for ββββ            <            αααα    , where one has the compatibility relations g  ββββ  =    
g  ββββ |  [0,  γγγγ] for γγγγ            <            ββββ    .      Since [0, αααα)  =  ∪∪∪∪        ββββ        <        αααα        [0, ββββ ] it follows that we can define a 
function k  αααα on the left hand side whose restriction to each subset [0, ββββ ] is g  ββββ .  We can 
extend this to a function g  αααα the closed interval [0, αααα] by setting g  αααα ( δδδδ  ) equal to H(k  αααα  ).  
Let f be the function whose union is the graphs of the functions g  αααα     for all αααα        ∈∈∈∈     X    . 
By construction this function has the properties specified in the theorem. 
 
To conclude the proof, we need to show uniqueness.  Suppose that f  ′′′′ is an arbitrary 
function satisfying the given properties, and let f be constructed as in the previous 
paragraphs.  Suppose that f   ≠≠≠≠         f  ′′′′.   By hypothesis both agree at zero, so there exists a 
unique minimal element αααα  >  0 at which their values disagree.   In particular, the 
functions agree on the initial segment [0, αααα ), and thus by the displayed condition we 
have   
 

f(αααα)   =   H( f  | [  0, αααα ) )   =   H( f  ′′′′ | [  0, αααα ) )   =   f  ′′′′(αααα), 
 

where the first equation is true by construction, the second is true by the minimality 
hypothesis on αααα, and the third is true by the assumption on f  ′′′′.   This contradicts our 
assumption that the two functions had different values at αααα    ,,,,    and it follows that there 
cannot be a point where the values of the two functions are unequal.� 
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Comparison of well – ordered sets 
 
The following basic fact about well – ordered sets is extremely important for many 
purposes, and it illustrates the concept of definition by transfinite recursion. 
 
Theorem 4.  Let X and Y be well – ordered sets.  Then there exists a nondecreasing 
map f : X  →→→→     Y + 1  =  Y  ∪∪∪∪ { Y } such that the following hold: 
 

(1) If X 0   =  f  – 1 [Y], then f | X 0  is strictly increasing. 
(2) If αααα  ∈∈∈∈        X 0, then f defines a 1 – 1 order – preserving correspondence between 

the initial segments [0 X,    αααα) and [0 X, f(αααα) ). 
(3) If f(αααα)  =  Y  ∈∈∈∈     Y + 1   =   Y  ∪∪∪∪ { Y } then f(ββββ)  =  Y and f[ [0 X, αααα) ]   ⊃⊃⊃⊃         Y. 

 
Proof.  We construct the map f by transfinite recursion, beginning with f(0X)  =   0Y.  
Suppose that αααα   >   0 X and one has g  αααα =  f | [0,    αααα) is defined with the given properties 
on [0,    αααα).  By construction, if g  αααα (ββββ)  ∈∈∈∈ Y  then     g  αααα [ [0,    ββββ) ]             ⊂⊂⊂⊂     Y.  There are now two 
cases.   
 
Case A.   g  αααα (ββββ)  ≠≠≠≠     Y for all ββββ ∈∈∈∈ [0,    αααα).  CLAIM:  Either there is an upper bound for the 
image of g  αααα or else g  αααα ( [0,    αααα) )  =  Y for some ββββ  <  αααα.  If the second alternative is false, 
then g  αααα is not onto, so let γγγγ be an element not in the image.  We claim that no \delta 
satisfying δδδδ  >  γγγγ can be in the image either.  If it were, then the second property would 
imply that γγγγ would also be in the image.  Therefore γγγγ must be an upper bound for the 
image of g  αααα.  Extend the definition of g  αααα        to include αααα by taking g  αααα (αααα) to be the least 
element of X that is not in the set g  αααα ( [0,    αααα) ) . 
 
Case B.   g  αααα (ββββ)  =  Y for some ββββ     <  αααα.  In this case we extend the definition of  g  αααα to 
include αααα by setting g  αααα (αααα)  =  Y.      
    
Thus we have constructed a map g  αααα on [0,    αααα] and it is an elementary exercise to show it 
has the desired properties.�     
 
The preceding result has the following important consequence; text references are page 
73 of Halmos and Theorem 8.10 on page 207 of Lipschutz. 
 
Theorem 5.  Let X and Y be well – ordered sets.  Then either there is a 1 – 1 order – 
preserving map from X to Y or there is a 1 – 1 order – preserving map from Y to X.  In 
each case one can choose the mapping so that its image is an initial segment or the 
whole set. 
 
Proof.   Let f be as in the previous result.  There are two possibilities. 
 
Case A.  Suppose that f[X]   ⊂⊂⊂⊂         Y.  —  In this situation there are two subcases.  If the 
image is equal to Y, then f is a 1 – 1 order – preserving correspondence between X and 
Y, so both options are realized in this case.  Suppose now that the image is a proper 
subset.  Then f defines a 1 – 1 order – preserving map from X to Y.  We claim that the 
image is in fact an initial segment.  Let γγγγ    be the least element of Y not in the image, and 
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suppose that f (ββββ)  <   γγγγ.  By the previous result, we know that f [ [0,    ββββ) ]            ⊂⊂⊂⊂     Y, and 
therefore it follows that the image of f is equal to [0,    γγγγ).   
 
Case B.   Suppose that Y  ∈∈∈∈     f[X].  —  Let γγγγ be the least element in f  – 1 [Y].  Then f 
defines a 1 – 1 order – preserving correspondence from [0,    αααα) to Y, and the inverse 
defines a similar map from Y to the initial segment [0,    αααα) of X.� 
 
 

Types of well – ordered sets 
 

Definition.  If (X,    ≤≤≤≤ X) and (Y,    ≤≤≤≤ Y) are well – ordered sets,  then we shall say that they 
have the same well – order type if there is an order – preserving 1 – 1 correspondence 
from X to Y.  We frequently denote this relationship by |X,    ≤≤≤≤ X|   =   |Y,    ≤≤≤≤ Y|. 
 
It is probably not surprising that this relation is reflexive, symmetric and transitive, so we 
shall do so right away. 
 
Proposition 6.  For every well – ordered set (X,    ≤≤≤≤ X) we have |X,    ≤≤≤≤ X|   =   |X,    ≤≤≤≤ X|.  
Furthermore if (X,    ≤≤≤≤ X) and (Y,    ≤≤≤≤ Y) are well – ordered sets such that |X,    ≤≤≤≤ X|   =   |Y,    ≤≤≤≤ Y|,  
then |Y,    ≤≤≤≤ Y|   =   |X,    ≤≤≤≤ X|.  Finally, if (X,    ≤≤≤≤ X) , (Y,    ≤≤≤≤ Y) and (Z,    ≤≤≤≤ Z) are well – ordered sets 
such that |X,    ≤≤≤≤ X|   =   |Y,    ≤≤≤≤ Y| and |Y,    ≤≤≤≤ Y|   =   |Z,    ≤≤≤≤ Z|, then  |X,    ≤≤≤≤ X|   =   |Z,    ≤≤≤≤ Z|.   
 
Proof.  For each well – ordered set (X,    ≤≤≤≤ X), the identity map id  X is an order – preserving 
1 – 1 correspondence from X to itself, so the relationship is reflexive.  Similarly, if we 
have |X,    ≤≤≤≤ X|   =   |Y,    ≤≤≤≤ Y|  and f is the associated 1 – 1 correspondence from X to Y, then 
its inverse is an order – preserving 1 – 1 correspondence from Y to X.  If in addition we 
have |Y,    ≤≤≤≤ Y|   =   |Z,    ≤≤≤≤ Z|  and g is the associated 1 – 1 correspondence from X to Y, 
then the composite  g f  is an order – preserving 1 – 1 correspondence from X to Z.� 
 
Definition.  If (X,    ≤≤≤≤ X) and (Y,    ≤≤≤≤ Y) are well – ordered sets,  then we shall say the well – 
order type of (X,    ≤≤≤≤ X) is smaller than or equal to the order type of (Y,    ≤≤≤≤ Y) if there is an 
order – preserving 1 – 1 map from X to Y whose image is an initial segment of Y.  We 
frequently denote this relationship by |X,    ≤≤≤≤ X|   ≤≤≤≤      |Y,    ≤≤≤≤ Y|.   
 
We shall show that the relationship in the preceding paragraph behaves like a linear 
ordering.  Most of the properties are easy to check, but proving the relationship is 
antisymmetric requires the following input (cf. Lipschutz, Theorem 8.9, page 207): 
 
Proposition 7.  Let X be a well – ordered set.  Then there is no 1 – 1 strictly increasing 
mapping from X to itself whose image is an initial segment [0,    αααα) for some αααα        ∈∈∈∈     X. 
 
Proof.   Suppose that there is such a map, and denote it by f.  Since f is not onto, it  
cannot  be the identity.  On the other hand, by hypothesis we also have f(0X)  =   0X.  
Therefore there must be a first ββββ    such that f(ββββ)  ≠≠≠≠        ββββ.  Since f(γγγγ)  =  γγγγ for γγγγ  <  ββββ    and ββββ is 
the first element which is not in [0,    ββββ), it follows that f(ββββ)   ≥≥≥≥         ββββ.  The assumption that f(ββββ)  
≠≠≠≠        ββββ implies that strict inequality holds.  Since f(ββββ) lies in the image of f, which is equal to 
[0,    αααα) it follows that f(ββββ)  <   αααα    , and thus also that ββββ  ∈∈∈∈     [0,    αααα) so that ββββ lies in the image of 
f.  Suppose that f(γγγγ)   =   ββββ.  What can we say about γγγγ?  First of all, it cannot be less than 



 144

ββββ, for γγγγ < ββββ implies f(γγγγ)  =  γγγγ  <  ββββ.  However it also cannot be greater than or equal to ββββ, 
for then we must have ββββ   <   f(ββββ)   ≤≤≤≤         f(γγγγ) .  This is a contradiction, and it traces back to 
our assumption about the image of f.  It follows that every strictly increasing mapping 
from X to itself must be onto.� 
 
Theorem 8.  The relationship  ≤≤≤≤  on well – ordering types has the following properties: 
 

(1)   For every well – ordered set (X,    ≤≤≤≤ X) we have |X,    ≤≤≤≤ X|   ≤≤≤≤   |X,    ≤≤≤≤ X|.  
Furthermore if (X,    ≤≤≤≤ X) and (Y,    ≤≤≤≤ Y) are well – ordered sets such that 
|X,    ≤≤≤≤ X|   ≤≤≤≤   |Y,    ≤≤≤≤ Y| and |Y,    ≤≤≤≤ Y|   ≤≤≤≤   |Z,    ≤≤≤≤ Z|, then  |X,    ≤≤≤≤ X|   ≤≤≤≤   |Z,    ≤≤≤≤ Z|.    
 

(2)   If (X,    ≤≤≤≤ X) and (Y,    ≤≤≤≤ Y) are well – ordered sets such that |X,    ≤≤≤≤ X|   ≤≤≤≤   
|Y,    ≤≤≤≤ Y| and |Y,    ≤≤≤≤ Y|   ≤≤≤≤   |X,    ≤≤≤≤ X|,  then we have |Y,    ≤≤≤≤ Y|   =   |X,    ≤≤≤≤ X|.    
 

(3)   If (X,    ≤≤≤≤ X) and (Y,    ≤≤≤≤ Y) are well – ordered sets, then we have either 
|X,    ≤≤≤≤ X|   ≤≤≤≤   |Y,    ≤≤≤≤ Y|  or  |Y,    ≤≤≤≤ Y|   ≤≤≤≤   |X,    ≤≤≤≤ X| . 

 
Proof.  The proofs of the first assertions are similar to the corresponding arguments for 
order types.  For the reflexive property we can use the identity mapping on X, and for the 
transitivity property, we are given strictly increasing mappings f and g, and the required 
map from X to Z is the composite g  f.  The dichotomy property in the third assertion is an 
immediate consequence of Theorem 5 from the previous subsection.  Thus it only 
remains to prove the antisymmetric property which is stated in the second assertion. 
 
Suppose that |X,    ≤≤≤≤ X|   ≤≤≤≤   |Y,    ≤≤≤≤ Y| and |Y,    ≤≤≤≤ Y|   ≤≤≤≤   |X,    ≤≤≤≤ X|,  and suppose that f : X  →→→→     Y 
and g : Y  →→→→ X are the strictly increasing mappings onto the whole set or an initial 
segment.  By the preceding result, the composite g f is the identity mapping.  If we can 
prove that g is onto, then the conclusion will follow because then g will be a 1 – 1 onto 
order – preserving map and hence we have |Y,    ≤≤≤≤ Y|   =   |X,    ≤≤≤≤ X|.   To verify that the 
mapping g is onto, let x  ∈∈∈∈     X be arbitrary and note that g f  =  id  X yields x  =  g( f(x) ).� 
 
 

Ordinal numbers 
 
Grammarians distinguish between two types of numbers in a language; namely, the 
cardinal numbers like one, two, three, …  which we use to count objects, and the 
ordinal numbers like first, second, third, … which we use to order objects or 
concepts.  Both notions of numbers are also present in set theory, and in fact Cantor 
introduced transfinite ordinal numbers before he introduced transfinite cardinal numbers. 
 
In set theory, the relationship between ordinal and cardinal numbers is not quite the 
same as it is in ordinary language, but the fundamental pairing of cardinals with counting 
and ordinals with ordering carries over.   We have seen that a cardinal number in 
mathematics in some sense corresponds to an equivalence class of sets in 1 – 1 
correspondence with each other.  One way of describing an ordinal number in 
mathematics is that in some sense it corresponds to an equivalence class of well – 
ordered sets.  More precisely, given two well – ordered sets ( A, <A ) and (B, < B ), then 
we shall say that they have the same ordinal type (or represent the same ordinal 
number) if there is a 1 – 1 order preserving correspondence between them; i.e., there 
is a 1 – 1 correspondence f : A ����    →→→→  B   that is strictly increasing :   x  <A  y  implies f(x)  
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< B  f(y) for all x and y in A.  It follows immediately that the inverse map f  – 1 : B  →→→→     A   will 
also be strictly increasing in this case. 
 
The simplest examples of well – ordered sets are given by subsets of the natural 
numbers; specifically, for each nonnegative integer n  we can take the well – ordered set 
with n elements given by {0, …, n – 1} or we can take the entire set of natural numbers.   
Not surprisingly, the example with n elements is denoted by n, and following Cantor the 

well – ordered set given by the natural numbers is generally denoted by ωωωω.  However, 
there are also many other examples that one can construct from these.  Perhaps the 
simplest one is the successor ωωωω    + 1, which as before is given by the union 
 

ωωωω        ∪∪∪∪     { ωωωω } 
 

with the original ordering on the elements of  ω and the extra element ωωωω as a unique 
maximal element.  Of course, one can repeat this process and obtain a new successor 

set ωωωω    + 2  =  (ωωωω    + 1) + 1, and this can be taken further to define a sequence of well – 

ordered sets ωωωω    + n  for every positive integer n.   In fact, there are standard, general 
arithmetic operations for constructing new well – ordered sets out of old ones.  The 
discussions on pages 75 – 77 and 81 – 85 of Halmos and Sections 8.10 – 8.12 on pages 
209 – 213 of Lipschutz provide both simple and complicated examples of how these 
constructions can be combined.   
 
Aside from the successor construction taking a well – ordered set X to its successor set 
X + 1, we shall not need the arithmetic operations on well – ordered sets in these notes.  
However, the previously cited discussions in Halmos and Lipschutz imply the existence 
of many inequivalent well – ordered sets that are countably infinite, and of course it 
would be helpful to have some comprehensive means for keeping track of such objects. 

The ordinal numbers will be a special class of well – ordered sets with the following 
crucial property:  Every well – ordered set has the well – ordering type of a unique 
ordinal number. 

Originally Cantor attempted to define ordinal numbers using the previously mentioned 
approach with well – ordering types of well – ordered sets. However, the following 
definition due to J. von Neumann improves on Cantor's approach in several respects 
and has become the standard mathematical description for ordinal numbers (e.g., it is 
the formulation appearing page 75 of Halmos; in contrast, the formulation on page 208 
of Lipschutz is essentially Cantor’s definition) : 

Definition.  A set S is an ordinal if and only if S is well – ordered with respect to set 
membership and every element of S is also a subset of S; in other words, x  ∈∈∈∈  S implies 
x  ⊂⊂⊂⊂  S.  The class of all ordinals (the ordinal numbers) will often be denoted by  ΩΩΩΩ ; the 
standard form of the Axiom of Specification (which is slightly different from the one in 
these notes) implies that ΩΩΩΩ  is a class.  In Proposition 11 below shall prove that  ΩΩΩΩ  
cannot be a set (this is the Burali – Forti Paradox that we have previously mentioned). 

The motivation for this definition arises from a standard model for the Peano axioms 
in which each nonnegative integer n corresponds to an explicit set with exactly n 
elements:  
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 0 is represented by the empty set S0  =   Ø. 

 1 is represented by the one element set S1  =   { Ø }. 

 2 is represented by the two element set S2  =   { Ø, { Ø } }  =  S1   ∪∪∪∪   { S1 }  

      3 is represented by the two element set S3  =   { Ø, { Ø }, { Ø, { Ø } } }  =  S2   ∪∪∪∪   { S2 } 

 … 

 n is represented by the n element set S n  =  S n – 1   ∪∪∪∪   { S n – 1 } 

Each of the sets S n satisfies the definition of an ordinal, and the same is true of the union S ωωωω  =  
∪∪∪∪ n  S n .  Additional motivation for the definition is that if S is an ordinal, then the 
successor set S + 1  =  S  ∪∪∪∪        { S } is also an ordinal. 

Proposition 9.  If S is an ordinal and x  ∈∈∈∈  S, then x is also an ordinal. 
 
Proof.    By the basic condition on ordinals, x is a subset of S, and therefore y  ∈∈∈∈  x 
implies y  ∈∈∈∈  S .  We need to show that x is well – ordered with respect to set 
membership and every element of x is also a subset of x.  If A is a nonempty subset of 
x, then the definition of ordinal number implies that A  ⊂⊂⊂⊂  x  ⊂⊂⊂⊂  S, and therefore the set  
A has a least element with respect to set membership because S is well – ordered.  Now 
suppose that y  ∈∈∈∈  x  ; to show that y  ⊂⊂⊂⊂  x we need to show that if z  ∈∈∈∈  y  then z  ∈∈∈∈  x  .  
We claim that z  ∈∈∈∈  S ; if so, then all three of x, y and z lie in S, and since the ordinal S is 
linearly ordered by set membership we must have z  ∈∈∈∈  x  .   
 
To prove that z  ∈∈∈∈  S , note that y  ∈∈∈∈  S by the preceding paragraph, and since S is an 
ordinal it follows that y is a subset of S, so that z  ∈∈∈∈  S as required.�  
 
 

Fundamental properties of ordinal numbers 
 
The first result in this subsection might look as if it should be trivial, and it would be if we 
knew that the class of ordinals ΩΩΩΩ    was a set.  However, at this point we do not know 
whether this is true (and in fact Proposition 11 below will show ΩΩΩΩ is not a set).  
 
Theorem 10.  If ΩΩΩΩ denotes the ordinal numbers with the relation given by set 
membership, then every nonempty subset in ΩΩΩΩ has a least element. 
 
Proof.    Let X be a nonempty set of ordinals, and let αααα        ∈∈∈∈            X.  Take Y to be the set of all 
ββββ        ∈∈∈∈            Y such that ββββ        ∈∈∈∈            αααα.  If Y is empty then αααα is the least element of X because X is 
linearly ordered by set membership.  If Y is nonempty, then Y is contained in αααα (using 
linear ordering again) and as such it has a least element.  Thus we have found a least 
element in both cases.� 
 
We have already noted that there is no “ set of all ordinal numbers”  just as there is no 
“ set of all cardinal numbers.”   In fact, the paradox about ordinals was noticed by C. 
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Burali – Forti (1861 – 1931) a few years before Cantor discovered the analogous 
paradox about cardinal numbers.  
 
Proposition 11.  (Burali – Forti Paradox.)   The class ΩΩΩΩ    of ordinal numbers is not a 
set.  
 
Proof.   Suppose that ΩΩΩΩ  is a set.  We claim that it is an ordinal; since we have shown 
that it is well – ordered with respect to set – theoretic membership, it follows that the 
latter describes a well – ordering on  ΩΩΩΩ.  To prove the second condition for an ordinal, 
suppose that  S  ∈∈∈∈  ΩΩΩΩ; we need to show that  S  ⊂⊂⊂⊂  ΩΩΩΩ    or equivalently that x  ∈∈∈∈  S implies 
x  ∈∈∈∈  ΩΩΩΩ .  But this follows because every element of an ordinal is an ordinal.  Wreq  erq 
Weqr qwer Since ΩΩΩΩ  is an ordinal, it follows that ΩΩΩΩ    + 1 is also an ordinal, and hence ΩΩΩΩ    + 
1 is an element of  ΩΩΩΩ .   By construction we have ΩΩΩΩ        ∈∈∈∈        ΩΩΩΩ    + 1, and since ΩΩΩΩ    is an ordinal it 
follows that ΩΩΩΩ        ∈∈∈∈        ΩΩΩΩ    ,,,,    which contradicts the Axiom of Foundation.  The problem arises 
from our assumption that ΩΩΩΩ  is a set, and therefore the latter must be false.�  
 
The following basic fact has already been mentioned. 
 
Theorem 12. (Classification of Well – Ordered sets).   Let X be a well ordered set.  
Then there is a unique αααα  ∈∈∈∈  ΩΩΩΩ        for which there is a 1 – 1 order – preserving 
correspondence from X to αααα. 
 
Sketch of Proof.   (See Goldrei, Theorem 8.2, pages 206 – 207, and Theorem 8.5, 
pages 212 – 213, for further details.)  We start with existence.  The idea is to construct a 
mapping from X to the ordinals by transfinite recursion such that for all ββββ  ∈∈∈∈        X, the 
function f maps [0, ββββ) in X to [0, f(ββββ) ) in  ΩΩΩΩ .  Eventually this process terminates when 
one runs out of elements in X.   Since ΩΩΩΩ is not a set, there are elements of it that do not 
lie in the image of f, and if αααα is the first element not in the image of f, then the latter 
defines a 1 – 1 order – preserving correspondence from X to αααα. Reqw 
 
Uniqueness follows from our previous result that a well – ordered set cannot be in 1 – 1 
order – preserving correspondence with a proper subset of itself.� 
 
The following existence result for least upper bounds is important for many purposes. 
 
Theorem 13.  Let X be a nonempty set of ordinals.  Then X has an upper bound (in the 
class of ordinals).   
 
Corollary 14.  In the above situation, the set X has a least upper bound. 
 
The corollary follows because the ordinals are well – ordered.� 
 
Sketch of proof of upper bound theorem.   (See Goldrei, Theorem 9.4, page 209 , or 
Halmos, the first four lines of page 80, for further details.)  Let $(X)    be the union of all 
ordinals in X.  To complete the proof, it is necessary to show that $(X) is an ordinal and 
that it is an upper bound for all the ordinals in X.  The second part uses the fact that two 
ordinals αααα    and        ββββ satisfy the αααα    ∈∈∈∈        ββββ if and only if αααα    is a proper subset of        ββββ....        This fact is 
established in (solved) Exercise 8.6 on page 208 of Goldrei.� 
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Theorem 15.  (Hartogs’ Theorem.)   Given a set A, there is an ordinal ββββ such that there 
is no 1 – 1 mapping from ββββ into A. 
 
This result strongly suggests that for every set A there is an ordinal λλλλ for which we have 
the cardinal number inequality |A|  ≤≤≤≤  λλλλ.  This will follow from the results of the next 
section, but the proof is considerably less trivial than it might seem at first; the problem 
involves proving the existence the 1 – 1 function from A  to  ββββ    whose existence may 
seem intuitively clear. 
    
Notes.  We have followed Goldrei in calling this result Hartogs’ Theorem, but we must 
include a strong warning that usually the phrase “Hartogs’ Theorem” refers to a major 
result in the theory of functions of several complex variables.  Surprisingly, there is no 
biography of the German mathematician F. Hartogs (1874 – 1943) on the extensive 
MacTutor mathematical biography site mentioned in the first unit of these notes, but 
there is a biography (in German) at the following online site: 

http://www.b.shuttle.de/b/pns/faecher/mathematik/Verfolgte/FHartogs.html 

An expanded English translation of this biography (without many of the pictures) appears 
in the course directory: 
 

http://math.ucr.edu/~res/math144/hartogsbio.pdf 
 

Proof of Hartogs’ Theorem on Ordinals.   We shall only sketch the argument; the 
details appear in the proof of Theorem 8.19 of Goldrei on pages 224 – 225 of the latter. 
 
The first crucial observation is that there is a set U of well – ordered sets such that if W 
is a well – ordered set supporting a 1 – 1 mapping into A, then W is in 1 – 1 order – 
preserving correspondence with some well – ordered set in U.  To see this, note that 
every such W is in 1 – 1 order – preserving correspondence with a subset of A and thus 
the collection of such subsets with well – orderings is in 1 – 1 correspondence with a 
subset of the set P(A) ×××× P(A ×××× A). 
 
Each well – ordered set corresponds to a unique ordinal number, so let V be the set of 
all ordinal numbers which correspond to the well – ordered sets in U.  By Theorem 13 
above we know that V has an upper bound, and of course there are also ordinals which 
are strictly larger than this upper bound.  Every such ordinal fulfills the condition in the 
conclusion of the theorem, for each such ordinal is greater than all the ordinals that 
admit 1 – 1 mappings into A.� 


