Mathematics 145A, Winter 2014, Examination 1

Answer Key

- 1. [20 points] Suppose $f: X \to Y$ is a function of sets and $C \subset Y$.
- (a) Prove that $f[f^{-1}[C]] \subset C$.

(b) If in the setting of (a) we have $f(x) = x^2$ and C = [-1, 1], describe $C - f[f^{-1}[C]]$.

SOLUTION

(a) Suppose that y belongs to the set on the left hand side. Then y = f(x) where $x \in f^{-1}[C]$, where the latter translates to $f(x) \in C$. Therefore we have y = f(x) where $f(x) \in C$, and since y = f(x) this means that $y \in C$.

(b) In this case $f^{-1}[C] = [0, 1]$ and $f[f^{-1}[C]]$ is the image of [0, 1] under $f(x) = x^2$. This image is [0, 1] and hence the set $C - f[f^{-1}[C]]$ is equal to [-1, 1] - [0, 1], which is the half-open interval [-1, 0). 2. [20 points] Let f be a monotonically increasing real valued function on the open interval (a, b), let $c \in (a, b)$ and set f(c-) equal to the least upper bound of all values f(x) with x < c.

(a) Prove that $f(c-) \leq f(c)$.

(b) If f(x) = 1 for $x \ge 0$ and f(x) = 0 for x < 0, evaluate f(0) - f(0-).

SOLUTION

(a) Since f is monotonically increasing we have $f(x) \leq f(c)$ for all x < c; in other words f(c) is an upper bound for the set of all values f(x) with x < c. Since f(c-) is the least upper bound of all such values, it follows that $f(c-) \leq f(c)$.

(b) Since f(0) = 0 for x < 0, it follows that f(0-) = 0. By definition f(0) = 1, and therefore the difference f(0) - f(0-) must be equal to 1.

3. [25 points] Let (X, d) be a metric space, and let $x, y, z \in X$. Prove that $d(x, y) \ge |d(x, z) - d(y, z)|$. [*Hint:* Prove that the left hand side is greater than or equal to both d(x, z) - d(y, z) and its negative.]

SOLUTION

The Triangle Inequality implies that

$$d(x,z) \leq d(x,y) + d(y,z)$$
 and $d(y,z) \leq d(x,y) + d(x,z)$

so that $d(x, y) - d(y, z) \leq d(x, z)$ and $d(y, z) - d(x, y) \leq d(x, z)$. Since |d(x, z) - d(y, z)| is the larger of the two expressions on the left hand sides of these inequalities, it follows that $d(x, y) \geq |d(x, z) - d(y, z)|$.

4. [15 points] Let (X, d) be a metric space, and let $p \in X$. Prove that $X - \{p\}$ is an open subset of X. [*Hint:* If $y \neq p$, consider $N_r(y)$ where r = d(p, y). If d(z, y) < r, is z = p possible?]

SOLUTION

Follow the hint. If d(z, y) < r = d(p, y) then p and y cannot be equal. But this means that $z \in X - \{p\}$. In other words, $N_r(y)$ is contained in $X - \{p\}$, which is the defining condition for a subset to be open in a metric space.

5. [20 points] Describe explicit subsets A, B of the real line which satisfy the following conditions:

- (a) Neither is open, but $A \cap B$ is open.
- (b) Neither is open, but $A \cup B$ is open.
- (d) Both A and $A \cup B$ are open, but B is not open.
- (d) Both A and $A \cap B$ are open, but B is not open.

[*Hint:* Take A and B to be intervals which might be open, closed or half-open.]

SOLUTION

These examples are definitely not unique.

- (a) Take A = [-1, 1) and B = (-1, 1], so that $A \cap B = (-1, 1)$.
- (b) Take A = [0, 1) and B = (-1, 0], so that $A \cup B = (-1, 1)$.
- (c) Take A = (0, 2) and B = (-1, 1], so that $A \cup B = (-1, 2)$.
- (d) Take A = (-1, 1) and B = (0, 2], so that $A \cap B = (0, 1)$.