Mathematics 145A, Winter 2014, Examination 1

Answer Key

1. [20 points] Suppose $f: X \rightarrow Y$ is a function of sets and $C \subset Y$.
(a) Prove that $f\left[f^{-1}[C]\right] \subset C$.
(b) If in the setting of (a) we have $f(x)=x^{2}$ and $C=[-1,1]$, describe $C-f\left[f^{-1}[C]\right]$.

SOLUTION

(a) Suppose that y belongs to the set on the left hand side. Then $y=f(x)$ where $x \in f^{-1}[C]$, where the latter translates to $f(x) \in C$. Therefore we have $y=f(x)$ where $f(x) \in C$, and since $y=f(x)$ this means that $y \in C . ■$
(b) In this case $f^{-1}[C]=[0,1]$ and $f\left[f^{-1}[C]\right]$ is the image of $[0,1]$ under $f(x)=x^{2}$. This image is $[0,1]$ and hence the set $C-f\left[f^{-1}[C]\right]$ is equal to $[-1,1]-[0,1]$, which is the half-open interval $[-1,0)$...
2. [20 points] Let f be a monotonically increasing real valued function on the open interval (a, b), let $c \in(a, b)$ and set $f(c-)$ equal to the least upper bound of all values $f(x)$ with $x<c$.
(a) Prove that $f(c-) \leq f(c)$.
(b) If $f(x)=1$ for $x \geq 0$ and $f(x)=0$ for $x<0$, evaluate $f(0)-f(0-)$.

SOLUTION

(a) Since f is monotonically increasing we have $f(x) \leq f(c)$ for all $x<c$; in other words $f(c)$ is an upper bound for the set of all values $f(x)$ with $x<c$. Since $f(c-)$ is the least upper bound of all such values, it follows that $f(c-) \leq f(c) . ■$
(b) Since $f(0)=0$ for $x<0$, it follows that $f(0-)=0$. By definition $f(0)=1$, and therefore the difference $f(0)-f(0-)$ must be equal to 1 .■
3. [25 points] Let (X, d) be a metric space, and let $x, y, z \in X$. Prove that $d(x, y) \geq$ $|d(x, z)-d(y, z)|$. [Hint: Prove that the left hand side is greater than or equal to both $d(x, z)-d(y, z)$ and its negative.]

SOLUTION

The Triangle Inequality implies that

$$
d(x, z) \leq d(x, y)+d(y, z) \quad \text { and } \quad d(y, z) \leq d(x, y)+d(x, z)
$$

so that $d(x, y)-d(y, z) \leq d(x, z)$ and $d(y, z)-d(x, y) \leq d(x, z)$. Since $|d(x, z)-d(y, z)|$ is the larger of the two expressions on the left hand sides of these inequalities, it follows that $d(x, y) \geq|d(x, z)-d(y, z)|$.
4. [15 points] Let (X, d) be a metric space, and let $p \in X$. Prove that $X-\{p\}$ is an open subset of X. [Hint: If $y \neq p$, consider $N_{r}(y)$ where $r=d(p, y)$. If $d(z, y)<r$, is $z=p$ possible?]

SOLUTION

Follow the hint. If $d(z, y)<r=d(p, y)$ then p and y cannot be equal. But this means that $z \in X-\{p\}$. In other words, $N_{r}(y)$ is contained in $X-\{p\}$, which is the defining condition for a subset to be open in a metric space.■
5. [20 points] Describe explicit subsets A, B of the real line which satisfy the following conditions:
(a) Neither is open, but $A \cap B$ is open.
(b) Neither is open, but $A \cup B$ is open.
(d) Both A and $A \cup B$ are open, but B is not open.
(d) Both A and $A \cap B$ are open, but B is not open.
[Hint: Take A and B to be intervals which might be open, closed or half-open.]

SOLUTION

These examples are definitely not unique.
(a) Take $A=[-1,1)$ and $B=(-1,1]$, so that $A \cap B=(-1,1)$.■
(b) Take $A=[0,1)$ and $B=(-1,0]$, so that $A \cup B=(-1,1) . ■$
(c) Take $A=(0,2)$ and $B=(-1,1]$, so that $A \cup B=(-1,2) . ■$
(d) Take $A=(-1,1)$ and $B=(0,2]$, so that $A \cap B=(0,1) . ■$

