
Supplement to Chapter 6 of Sutherland, 
 

Introduction to Metric and Topological Spaces (Second Edition) 

 
Avoiding plausible but false conclusions 

 
From an intuitive viewpoint, many results about metric spaces probably seem very obvious to at 
least some readers.  For example, the validity of Proposition 5.26 on page 51 of Sutherland (a 
finite union of bounded subsets is bounded) quickly becomes apparent if one draws a picture 
showing two bounded subsets of the plane.  Clearly one can always draw a circle with a large 
enough radius to enclose the two bounded subsets, no matter how far apart they might be 
located.  In this case, the proof of the proposition in Sutherland is an abstract logical justification 
of normal geometrical intuition; furthermore, the proof verifies that the conclusion is extremely 
general in nature and not limited to examples which can be represented very simply on a sheet 
of paper.  
 

 
 
Although geometric and logical intuition are often extremely for studying and grasping the basic 
concepts and results for metric spaces, it is frequently misleading, and for this reason  it is 
always necessary to give logical arguments which justify intuitive conclusions, no matter 
how obvious they may seem.  Frequently a situation is far less simple than it appears at first. 
 

[E]vidence ... may seem to point very straight to one thing, but if you shift your 
own point of view a little, you may find it pointing in an equally uncompromising 

manner to something entirely different. 
 

A. C. Doyle (1859 – 1930), Sherlock Holmes : The Boscombe Valley Mystery 
 

For every problem, there exists a simple and elegant solution which is absolutely 
wrong.  [ Note:  A “solution” of this sort is rarely unique. ] 

 

J. B. Wagoner (1942  –  ) 
 

 

One simple example of this type is given in Exercise 6.12 on page 73 of Sutherland.  Given a 

point  p  in a metric space  X  and a positive constant  r, the open ball or disk  Br(p)  of radius  r  
centered at  p  is the set of all  x  in  X  such that the distance from  p  to  x  is less than  r.  If  X  

is  RRRR
n
, then it is not difficult to check that the boundary of  Br(p)  is the set of all points  y  whose 

distance from  x  is equal to  r.  In the drawing on below, the open disk is colored in pink and its 
boundary (which is the set of all points  y  with  d(y, p)  =   r) in red. 
 



 
 

One part of the exercise is to generalize half of this statement to arbitrary metric spaces: 
 

The closure of Br(p) is contained in the closed disk of all points  y  
such that  d(y, p)  ≤  r. 

 

The remainder of the exercise is to prove that, in general, the closure of the open disk is not 
necessarily equal to the closed disk.  In particular, this shows that some basic notions for 
metric spaces do not necessarily have all the good properties which hold in important and 
relatively simple cases.   
 
Here is a related example involving the notions of closure and interior for a subset of a metric 
space  X.  We start with the following statement: 
 

The open subset Br(p) in the coordinate plane is equal to the interior of 
its closure. 

 

Here is a proof:  Since  Br(p)  is open and contained in its closure, it follows that this set is 
contained in the interior of its own closure.  To complete the proof, first note that the closure of  

Br(p)  is contained in the set of points  y  such that  d(y, p)  ≤   r, so it will suffice to prove that if  
d(y, p)  =   r  then  y  cannot lie in the interior of the closure.   Assume now that  y  does satisfy 

this equation, and let  z  =  y – p.  If  V  is an open set containing  y  and  δδδδ  >  0  is such that  

Bδδδδ(y) is contained in  V, then it follows that  y + h z  lies in  V  if  0  <  h  <  δδδδ/|z|  =  δδδδ/r.  By 

construction,  y + h z  =  p + (1 + h) z; therefore, if we let  V  denote the interior of the closure of  

Br(p)  and assume that  y  lies in  V, then it will follow that  y + h z  also lies in  V. 
 

 
 

On the other hand, the drawing above suggests that   y + h z  =  p + (1 + h) z  does not lie in the 

closure of   Br(p), and we can prove this as follows:  If a point  x  lies in this closure then as 
before we know that  d(p, x)  ≤  r, but we have 
 

d(p, y + h z)   =   (1 + h) | z |   =   (1 + h) r   >   r 
 

so that    y + h z    cannot lie in the closure of the open disk, and  a fortiori  it cannot lie in the 
interior of this closure.   
 



The relative simplicity of this example may suggest that 
the interior of its closure.  However

counterexamples in the coordinate plane are given by letting  

sets, the interior of the closure of   
points of  W  are depicted in red.
 

 
An open set which is equal to the interior of this closure is said to be a regular open set
basic properties of such sets are developed in 
 

J. Dugundji. Topology
 

The online site  http://planetmath.org/encyclopedia/RegularOpenSet.html

information on this topic. 
 
 
NOTATION.  In mathematical writings
hopelessly false conclusions, is often marked by “dangerous bend” symbolism like the following:
 

 

http://en.wikipedia.org/wiki/File:Knuth%27s_dangerous_bend_symbol.svg

 

 
Closures of countable unions.

say, the nonnegative integers), then it is tempting to 
the identity    

especially since the analogous equation
6.14 on page 74 of Sutherland).  

case.  Perhaps the simplest counter

set  { 1/k } ; in this case each one point set
closures (the left hand set) also contains the point  
set is contained in the first  (Hint:
 

Note.   Exercise 7 on page 101 of Munkres
identity displayed above, and the goal of the exercise is to find the mistake
 

Finally, here is a similar problem which is left to the reader

The relative simplicity of this example may suggest that every open subset might be 
However, this is definitely false.  Perhaps the simplest 

counterexamples in the coordinate plane are given by letting  W  =  Br(p)  –  { p };

the interior of the closure of   W  is equal to   Br(p).   In the drawing below,
. 

 

An open set which is equal to the interior of this closure is said to be a regular open set
basic properties of such sets are developed in Exercise 22 on page 92 of the following book

Topology. Allyn and Bacon, Boston, MA, 1965. 

http://planetmath.org/encyclopedia/RegularOpenSet.html also contains further 

In mathematical writings, material which can easily be misinterpreted
is often marked by “dangerous bend” symbolism like the following:

 

http://en.wikipedia.org/wiki/File:Knuth%27s_dangerous_bend_symbol.svg

Some additional examples 

Closures of countable unions.   If  { Ak }  is an infinite sequence of closed sets (index

then it is tempting to think that the closure construction satisfies 

______________                 ____ 

U  Ak    =   U  Ak 
 

the analogous equation is valid for a finite sequence of closed sets
  However, it is easy to construct examples where this is not the 

counterexample involves the real line, where we take

in this case each one point set  { Ak }  is closed in the real line, but the union of the 
closures (the left hand set) also contains the point  { 0 }.  It is not difficult to prove that the second 

Hint:  Use Proposition 6.11(b) on page 63 of Sutherland

Exercise 7 on page 101 of Munkres, Topology, has a fallacious proof of the purpo
and the goal of the exercise is to find the mistake. 

here is a similar problem which is left to the reader: 

every open subset might be equal to 
Perhaps the simplest 

}; for these open 

, the boundary 

An open set which is equal to the interior of this closure is said to be a regular open set.  Many 
following book:   

also contains further 

material which can easily be misinterpreted, leading to 
is often marked by “dangerous bend” symbolism like the following: 

http://en.wikipedia.org/wiki/File:Knuth%27s_dangerous_bend_symbol.svg 

sets (indexed by, 

the closure construction satisfies 

for a finite sequence of closed sets (by Exercise 
examples where this is not the 

where we take  Ak  to be the 

but the union of the 
It is not difficult to prove that the second 

of Sutherland).   

of the purported 



 

Question.  Suppose that  f : X →→→→ Y  is continuous, and let  A  be a subset of  X  such that  p  is  

a limit point of  A.  Is  f(p)  a limit point of  f [A]?  Prove this or give a counterexample. 

 
Some references 

 
Since topological spaces are so general in nature, it is eventually necessary to place additional 
conditions on them in order to obtain nontrivial theorems.   There is an extremely wide range of 
standard properties in point set topology, and one basic theme in the subject is to determine 
whether or not one given property  P  logically implies a second property  Q.   Obviously a direct 
proof is the usual method for showing that  P  implies  Q, while showing that  P  does not imply 
Q  is generally done by constructing an example of a topological space which satisfies  Q  but 
not  P.  The following classic text is the standard source of examples for proving that one 
property  Q  is not a consequence of another property  P (or some combination of properties). 
 

L. A. Steen and J. A. Seebach Jr.  Counterexamples in Topology (Reprint of 
the 1970 Ed.).  Dover Publications, Mineloa, NY, 1995. 

  

There is also a searchable online database which contains a great deal of information about this 
topic: 
 

http://austinmohr.com/home/?page_id=146 

 


